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A B S T R A C T

This paper proposed a new multi-objective approach to find the optimal set of weight's combination of forecasts
that were jointly efficient with respect to various performance and precision metrics. For this, the residues' series
of each previously selected forecasts methods were calculated and, to combine them through of a weighted
average, several sets of weights were obtained using Simplex - Lattice Design {m,q}. Then, several metrics were
calculated for each combined residues' series. After, Principal Components Factor Analysis (PCFA) was used for
extracting a small number series' factor scores to represent the metrics selected with minimal loss of information.
The extracted series' factor scores were mathematically modeled with Mixture Design of Experiments (DOE-M).
Normal Boundary Intersection method (NBI) was applied to perform joint optimization of these objective
functions, allowing to obtain different optimal weights set and the Pareto frontier construction. As selection
criteria of the best optimal weights' set were used the Shannon's Entropy Index and Global Percentage Error
(GPE). Here, these steps were successfully applied to predict coffee demand in Brazil as a case study. In order to
test the applicability and feasibility of the proposed method based on distinct time series, the coffee's Brazilian
production and exportation were also foreseen by new method. Besides, the simulated series available in
Montgomery et al. (2008) were also used to test the viability of the new method. The results showed that the
proposed approach, named of FA-NBI combination method, can be successfully employed to find the optimal
weights of a forecasts' combination.

1. Introduction

In 2017–2018 period, Brazil maintained the position of the world's
largest coffee producer. According to the International Coffee
Organization (ICO, 2018), for this period, Brazil produced around 51
million bags of 60 kg coffee, which represented approximately 31.94%
of the global coffee production. Regarding the exportation, according to
this same organization, Brazil – the world's largest exporter – exported
30.5 million bags of 60 kg coffee in 2017–2018, which represented
approximately 26.40% of all coffee exported in the world. In addition to
being the largest producer and exporter of green coffee beans, Brazil is
also the second largest consumer behind only the United States. In the
same period of 2017–2018, Brazil consumed around 20.5 million bags
of 60 kg coffee according to ICO (2018).

Analyzing the numbers of the annual period of 2017–2018, one can
note that almost all the coffee produced in Brazil is sold domestically
and in foreign markets, which hardly leaves any security stocks. In
relation to the coffee production chain, the lack of safety stocks and a
likely coffee consumption growth in the coming years will require
strategically constant adequacy of their physical and managerial
structure. So that the domestic and external markets do not fail to be
supplied. As shown above, the domestic consumption forecast of coffee
is fundamental to the whole members of agribusiness coffee chain, with
part of it represented by Fig. 1, in order to avoid new problems of
shortages or overproduction. In relation to industries of soluble, roasted
and ground coffee, the demand forecast is important so that they can
plan their productive capacity for the future. For the grain production
sector, which exports the product to the international market and still
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provides feedstock for the processing of coffee industries in Brazil, the
forecast is important so that they can plan the crop and the supply of
green coffee grains.
In relation to the choice of strategy for forecasting, over the last 5

decades, many advantages have been pointed out in combining forecast
methods, such as:

(I) it aggregates information about the form of the relationship be-
tween the variables, since one forecasting method is based on
variables or information that the other forecasts has not con-
sidered (Bates and Granger, 1969; Bunn, 1975; Chan et al., 1999;
Moreno and López, 2013; Graef et al., 2014);

(II) it allows identifying the underlying process, since those different
forecasting models are able to capture different information's as-
pects available for prediction (Reeves and Lawrence, 1982;
Clemen, 1989);

(III) it takes into account the relative accuracy of individual methods
and forecast errors' covariance among the methods (Winkler and
Makridakis, 1983);

(IV) it improves forecasting accuracy (Makridakis and Winkler, 1983;
Winkler, 1989; Mahmoud, 1989; Hibon and Evgeniou, 2005;
Bjornland et al., 2012; Bordignon et al., 2013; Cang and Yu, 2014;
Graef et al., 2014; Barrow and Kourentzes, 2016);

(V) it decreases accuracy's variability for different variance's measures
(Makridakis and Winkler, 1983; Mahmoud, 1989; Hibon and
Evgeniou, 2005);

(VI) it allows the uncertainty reduction, being safer and less risky than
relying on a single method (Makridakis and Winkler, 1983;
Winkler, 1989; Hibon and Evgeniou, 2005; Bordignon et al.,
2013);

(VII) it may result in more normally distributed errors (Barrow and
Kourentzes, 2016).

There are basically two methodologies to perform the combination
of forecasting methods: simple unweighted average (SA or AVG) and
weighted average (WA). Regard to the WA, during the last 50 years
many articles have been written on classical techniques to find the best
weights for combining forecasting methods (weights assigned to each
individual forecast). Most of these studies focused on minimizing only
one goal or single criterion as the error variance's combination (Bates
and Granger, 1969); the average square error (Newbold and Granger,

1974); mean absolute percentage error (MAPE) (Winker and
Makridakis, 1983; Lam et al., 2001); out-of-sample sum of squared
forecast errors (Granger and Ramanathan, 1984; Deutsch et al., 1994;
Chan et al.,1999); mean squared error (MSE) (Diebold and Pauly, 1990;
Lesage and Magura, 1992); mean absolute error (MAE) (Lesage and
Magura, 1992), and maximum absolute percentage error (MAXAPE)
(Lam et al., 2001).
However, few studies employed multi-objective approaches. Reeves

and Lawrence (1982) developed a multiple objective linear program-
ming (MOLP) framework for generating combined forecasts that are
efficient in respect to multiple objectives, minimizing four objectives
simultaneously (total forecast error, positive forecast error over all
periods, total forecast error over the recent periods, and maximum
forecast error). They justified the use of MOLP by arguing that selecting
a single individual forecast based upon a single objective could not
make the best use of available information as a combined forecast
could, considering the minimization of multiple objectives and not only
the minimization of forecast error variance. Likewise, Gulledge et al.
(1986) used MOLP to determine weighted linear combinations of
forecasts in which three forecast goals were minimized (sum of the
absolute forecast errors over all 24 periods, sum of the absolute fore-
casts errors with double weighting in the last 8 periods, and maximum
absolute forecast error). Their justification was the fact that multiple
objectives allow the decision maker to have more flexibility in selecting
forecasted variables as inputs in their policy analysis and often provide
a better fit to the specific decision problem. Reeves et al. (1988) argued
that multi-objective mathematical weighting scheme allows the direct
incorporation of a varied set of management objectives to be brought
directly into the forecasting process and created a multi-objective linear
programming that minimized total forecast error, over forecast errors
and recent forecast error. Once again, Reeves and Lawrence (1991)
developed a mathematical programming framework for combining
forecasts given multiple objectives and incorporated two types of ob-
jectives – accuracy and direction of change and concluded that com-
bined forecasts generated in a multi-objective environment are at least
as good as the best individual forecast with respect to one or more
objectives. As an argument for using this approach, they claimed that it
allows decision makers to trade-off weighting schemes for combining
forecasts with respect to multiple conflicting measures of forecast ac-
curacy. Ten years later, in a portfolio based-approach, Leung et al.
(2001) calculated a set of weights of a combination using a goal

Fig. 1. Part of the coffee agroindustrial chain.
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programming (GP) multi-objective approach. The authors used a GP
model to combine the forecasts, such that the expected return and
skewness of return were maximized while the variance (risk level) of
the return was minimized. More recently, Ustum and Kasimbeyli (2012)
made use of a general mean-variance-skewness model, in which these
metrics were coupled in the multi-objective portfolio optimization
model to find the optimal weights of each action in a great portfolio.
Differently, this work proposes a new multi-objective framework -

the FA-NBI combination method - to find the optimal weights' time
series combination that are jointly efficient with respect to various
performance and precision metrics. Specifically to forecast coffee con-
sumption in Brazil as a case study to demonstrate the steps for FA-NBI's
application, four different time series' methods were selected previously
to participate in the combination - Double Exponential Smoothing
(DSE), Holt-Winters Multiplicative (HW) and two specifications of
Autoregressive Integrated Moving Average (ARIMA). After, properly
starting the implementation of the new approach, the residues' series
for each of these methods were calculated. In sequence, with the use of
simplex-lattice design {4, 5}, a Mixture Design of Experiments (DOE-M)
approach, 61 wt' sets to combine the residues series of the 4 selected
methods were obtained. For each set of weights generated by DOE-M,
combined residues' series of the selected time series methods were
obtained through a weighted average. Then, for each of the 61 com-
bined residues' series found, 14 forecasting metrics were calculated,
generating 14 metrics' series. Seeking to reduce the dimensionality of
the problem, Principal Components Factor Analysis (PCFA) multi-
variate technique was applied for extracting a small number of factors
scores' series to represent the 14 selected performance and precision's
metrics, with minimal loss of information. Thus, in the context of time
series combination, PCFA was used to reduce the number of metrics to
be jointly optimized from 14 to 2. As a result, allowed us to find the
weights' combination not only minimizing one or two metrics, but more
than 14 metrics together, which made different this work from those
mentioned above. Other difference was that, in sequence, DOE-M was
used to model two mathematical objective functions of factor scores
that represented the 14 original metrics, which without joint optimi-
zation of the same would not be possible. After these two factor scores'
functions were modeled, the Normal Boundary Intersection (NBI)
method was applied for the multi-objective optimization, being found
21 Pareto-optimal weights. Then, to not sacrifice the information pro-
vided by each of the 14 selected metrics, it was proposed to optimize
them together to find the best combination of time series methods. To
select the best optimal set of weights was used Shannon's Entropy Index
(S) by Shannon (1948) and Global Percentage Error (GPE). FA-NBI
combination found was statistically compared in terms of performance
and precision using DM test, introduced by Diebold and Mariano
(1995), with the combined individual methods and with the other
traditional weighting methods. In order to prove the competitiveness,
applicability and feasibility of the proposed approach, coffee's Brazilian
production and exportation were also foreseen using FA-NBI and ana-
lyzed in conjunction with the coffee demand. The proposed method was
also applied and tested based on simulated series available in
Montgomery et al. (2008).
This paper is organized as follows: the next section presents the

methodology proposed in this study to get the optimal weights' com-
bination together with a brief literature review focusing on the forecast
metrics most used in the literature to make comparisons between
forecasting methods, PCFA, DOE-M, NBI, S, GPE and some of the more
traditional methods for finding weights' combination. Section 3 pre-
sents the results analysis and the conclusions are presented in Section 4.

2. Methodology and background literature review

Part of terminology used in this section is displayed in Table 1.
To obtain the optimal weights for a combination of time series, this

study proposes a combination of the aforementioned techniques that

were applied according to the following step-by-step procedure:
Step 1: Data collection.
Step 2: Selection of the z individual time series methods to take part

in the combination. After, generate corresponding residues series (R)
for each of these z chosen methods (R1, R2, …, Rz series), each series
with g observations. The Appendix A provides a brief explanation of the
forecasting methods selected in this paper to take part in the combi-
nation in order to specifically forecast the demand for coffee in Brazil,
i.e. Double Exponential Smoothing (DES), Holt-Winters Multiplicative
(WM) and Autoregressive Integrated Moving Average (ARIMA). As will
be observed, with different time series, other forecasting methods will
be selected.
Step 3: Using DOE-M, definition of p sets of weights (proportions)

through a mixture simplex-lattice design {q, m}, with each set of
weights with z weights (w1, w2, w3, …, wz), to combine the z residues
series generated in Step 2. The simplex-lattice design technique will be
explained in step 6. In sequence, were produced p series of combined
residues, each one with g observations, according to the procedure

Table 1
Nomenclature.

A Aggregation
API Forecasts' comparison of accuracy made by institutions
AR Average ranking
AvgRelMAE Average Relative Mean Absolute Error
C c-th set the weights, with c= 1, 2, …, p
C Combination
CC Combination of combinations
CIM Computational intelligence method
FM Forecast methods
FSq q-th factors scores series
FSqp q-th factor score calculated based on p-th combined residues series
G g-th observation of a given residues series
GMRAE Geometric Mean Relative Absolute Error
M m-th forecasting method, with m=1, 2, …, z
NN Neural Network
Mj j-th original performance metric
Mjp j-th original performance metric calculated based on the p-th

combined residues series
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MASE Mean Absolute Scaled Error
MdAE Median Absolute Error
MdAPE Median Absolute Percentage Error
MdRAE Median Relative Absolute Error
ME Mean Error
MSE Mean Squared Error
MSPE Mean Squared Percentage Error
P p-th set of weights/p-th combined residues series
PB Percentage Better
Rz Residues series of z-th forecasting method
Rzg g-th observation of z-th residues series
Rt

m t-th observed residue, belonging to a series of residues of the m-th
forecasting method

RCpg g-th observation of z-th residues series, series originated from z-th
forecasting method

RCt
c t-th combined residue, calculated based on the c-th set of weights

RMSE Root Mean Squared Error
RMSPE Root Mean Square Percentage Error
SD Standard Deviation of Errors
sMAPE Symmetric Mean Absolute Percentage Error
sMdAPE Symmetric Median Absolute Percentage Error
U1 U1 Theil's statistical coefficient
U2 U2 Theil's statistical coefficient
VAR Variance of errors
t t-th observation of the residues series of each forecasting method,

with t=1, 2, …, g
Wz Weight assigned to z-th forecasting method
Wzp Weight attributed to the z-th forecasting method considering the p-

th set of weights
WzpRzg Weight pertaining to the p-th set of weights assigned to the z-th

forecasting method, multiplied by the g-th observation of the z-th
residues series originating from the z-th forecasting method

wm
c Weight of the m-th method in c-th combination
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described in Fig. 2.
In mathematical terms, the t-th observation from the c-th series of

combined residues (RCt
c) can be calculated by Eq. (1).

=
=

RC w Rt
c

m

z

m
c

t
m

1 (1)

The subsequent steps 4, 5 and 6 are indicated in Fig. 3.
Step 4: Calculation of the performance and precision (variability)

forecast measures or metrics (M). In this step 4, j metrics must be cal-
culated for each p combined series of weighted residues obtained in
Step 3. With this, j metrics based on each series of combined residues
will be produced, with each series of metrics with p observations,

Fig. 2. Production of the p residues combined series.

Fig. 3. Steps to obtain the experimental design.
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according to Fig. 3.
The 14 metrics (j=14) used in this work were MAE, MSE, RMSE,

MASE, RMSPE, MAPE, sMAPE, U1, U2, VAR, SD, MdAE, MdAPE and
sMdAPE. The Equations to calculate these metrics are described in
Appendix B at the end of this article. The variance (VAR) and standard
deviation (SD) of errors or residues are metrics of risk associated to the
choice of method in respect to the precision (variability), that is, of
occurrence of high values thereof of above average and below average
(Hibon and Evgeniou, 2005). The twelve others are metrics of accuracy
(performance), that demonstrate the “ability of a forecasting method to
forecast actual data, either when a model is fitted to such data, or for
future periods (post-sample) whose values have not been used to de-
velop the forecasting model” (Makridakis, 1993). MAE measures how
much the estimated or forecasted value differ from actual values (Xu
et al., 2017). MSE is the average of the prediction error squares, which
can be applied for estimating the change of forecasting models (Du
et al., 2018). RMSE summarizes the difference between the actual and
forecasted values (Xu et al., 2017). MAPE is a prediction accuracy's
measure of a forecasting method in statistics (Du et al., 2018). Like
MAPE, sMAPE is an average of the absolute percent errors but these
errors are computed using a denominator representing the average of
the forecast and observed values. MASE is a measure of forecast accu-
racy proposed by http://www.sciencedirect.com/science/article/pii/
S0169207006000239 Hyndman and Koehler (2006). It is the absolute
error (MAE) of a given method divided (i.e. scaled) by the Mean Ab-
solute Error (MAE) of the naïve benchmark model. RMSPE is the square
root of the average sum of squared errors expressed as a percentage. U1
Theil's statistic coefficient is conceived as a measure of accuracy, while
U2 Theil's is a statistical coefficient of forecasting quality to make
comparisons between the chosen forecast and the naïve prediction.
Both measures are bounded by zero (the case of perfect forecasting) and
one (allegedly, the worst case) (Martínez-Rivera et al., 2012). MdAE is a
robust measure of the variability of a univariate sample of quantitative
data. MdAPE is calculated by ordering the absolute percentage error
(APE) from the smallest to the largest and using its middle value as
median. It is more resilient to outliers than MAPE and sMAPE and is
recommended as a model performance evaluation criterion when
forecasting models need to be compared across different series (Xu
et al., 2017). The sMdAPE is obtained by ordering the symmetric ab-
solute percentage errors and using the middle value.
The choice of the error measure to be used in each case depended on

the characteristics presented by the data series, such as differences in
scale across the series, the amount of change that occurs over the
horizon forecast, the presence of extreme forecast error outliers, and the
purpose of research (Armstrong and Collopy, 1992; Ahlburg, 1992).
Due to the fact that each measure of error has its weak points, several
empirical studies found in the literature used more than one perfor-
mance measure to select the best forecasting method and/or the best
combination of forecasting methods, as can be observed in the Table 2.
In these studies, the best method or the best combination of methods
was chosen based on those who had the lowest errors measures in-
dependently. In a different way, because each metric has its weak and
strengths points, in addition to each providing a different information,
in the present work the choice of combination weights will be the one
that optimizes at the same time all the 14 metrics (the objectives).
Step 5: Application of PCFA to reduce the dimensionality of the

problem, obtaining q series of factor scores, with each one of these q
series representing one or more of one of the j metrics obtained in Step
4, such that j < q. Considering the linear factor analysis model ex-
tracted by principal components and applying the Varimax rotation, the
number of q retained factors was determined by Kaiser's rule (1960).
Each of the observations of the q factor scores series represented a re-
sponse related to a given set of combined residues and, consequently, to
a given set of weights selected in Step 3 (Fig. 3).
PCFA is multivariate analysis technique that allows reducing the

dimensionality of a data set, separating each group of highly correlated

variables, forming, for each of these groups of correlated variables, a
construct or factor responsible for the observed correlations. In PCFA,
using covariance matrix S or correlation matrix R for factor extraction,
the p original variables, which form a random vector of observed
variables X=[X1, X2, …, Xp], with p components, mean μ and covar-
iance matrix S or correlation matrix R, are represented by p linear
functions. As can be seen in Eq. (2), the set of these linear functions
form the linear factor analysis model with m common factors. Each one
of these functions is linearly dependent of m random, hypothetical,
latent and unobservable variables (F1, F2, …, Fm), known as common
factors or constructors (F), plus a random error component (ej), with
m < p (Johnson and Wichern, 2007).

= + +…+ +
= + +…+ +

= + +…+ +

l l l
l l l

l l l

X F F F e
X F F F e

X F F F e

µ
µ

µ

m

m

p p pm

m

m

p p m m

1 1 11 1 12 2 1 1

2 2 21 1 22 2 2 2

1 1 2 2 (2)

It may be noted in Eq. (2) that PCFA reduces the problem of di-
mensionality from p to m dimensions, modeling representative func-
tions of the original variables, with each of these functions being
formed by m factors or hypothetical variables F1, F2, …, Fm. Thus, a
small number of m factors can be used to explain many p original
variables.
The common factors F1, F2, …, Fm, extracted from the covariance

matrix S (or correlation matrix R), are calculated on the basis of pairs of
eigenvalues-eigenvectors estimated …e e e( ˆ , ˆ ), ( ˆ , ˆ ), , ( ˆ , ˆ )p p1 1 2 2 , where

…ˆ ˆ ˆp1 2 . Each one of the functions is also formed by ljk terms
known as factor loadings, with j=1, 2, …, p and k=1, 2 …, m, such
that the ljk term is the loading of the j-th variable on the k-th factor.
Loadings close to 1 or 1 indicate that the factor strongly represents the
variable, while loadings close to zero indicate that the factor has a weak
influence on the variable (Johnson and Wichern, 2007). A good rule of
thumb is that standardized loading estimates should be 0.5 or higher,
and ideally 0.7 (Hair et al., 2010). The error terms ej are also known as
specific factors, because each ej is specific to each function (Xj - μj),

Table 2
Performance measures used individually to select and/or combine forecasting
methods.

Authors Choose
between

Performance metrics used

Winkler and Makridakis (1983) FM, C, CC MAPE, MSE
Kang (1986) FM, C MAE, MSE
Sankaran (1989) C, C MAPE, MSE
Diebold and Pauly (1990) FM, C RMSE, MAE
Makridakis (1990) FM, C MSE, MAPE, MdAPE
Tseng et al. (2002) FM, NN, C MSE, MAE, MAPE
Meade (2002) FM MdAE, RMSE, PB
Weatherford and Kimes (2003) FM, C MAE, MAPE
Fang (2003) FM, C RMSPE, MAE, RMSE
Dekker et al. (2004) FM, A, C sMAPE, MAE, MSE, AR
Faria and Mubwandarikwa (2008) C, CC MAE, RMSE, GMRAE
Jose and Winkler (2008) FM, C sMAPE, sMdAPE
Wallstrom and Segerstedt (2010) FM MSE, MAE, sMAPE
Crone et al. (2011) FM, NN, CIM,

C
sMAPE, MdRAE, MASE,
AR

Andrawis et al. (2011) C, CC sMAPE, MASE
Martins and Werner (2012) FM, C, CC MAPE, MSE, MAE
Bordignon et al. (2013) FM, C MSE, MSPE, MAE, MAPE
Simionescu (2013) API ME, MAE, RMSE, U1, U2
Adhikari and Agrawal (2014) FM, NN, C MSE, sMAPE
Petropoulos et al. (2014) FM, C, CC sMAPE, PB, MASE
Cang and Yu (2014) FM, NN, C, CC MAPE, MASE
Zhao et al. (2014) FM, C RMSE, MAE, MAPE
Fildes and Fotios (2015) FM, C MdAPE, MAPE,

AvgRelMAE
Tselentis et al. (2015) FM, C RMSE, MAPE
Barrow and Crone (2016) NN, C sMAPE, MASE
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which does not happen with the common factors F1, F2, …, Fm, since it
integrates all linear functions (Xj-μj) representing each variable (Jolliffe,
2002; Johnson and Wichern, 2007). In each j-th function (Xj - μj), the
part of variance explained by m common factors (F1, F2, …, Fm) is
known as communality (h )j

2 . In addition, the part of variance explained
by a specific factor (ej) is known as uniqueness or specific variance ( )
Thus, = + + + +l l l...jj j j jm j1

2
2

2 2 or +=hjj j j
2 explain the total var-

iance of the variable j in the generated linear factor analysis model. The
j-th estimated communality (h̃ )j

2 is calculated by the sum of the squares
of the estimated loadings (l̃ )jk of the j-th variable in m common factors
( = +h l l˜ ˜ ˜j j j

2
1
2

2
2 +…+ l̃ )jm

2 , with k=1, 2, …, m. The estimated l̃ ji
2 is the

contribution of i-th common factor to the variance of j-th variable s( ),ji

and = lˆ ˜1 11
2 + l̃21

2 + … + l̃ p1
2 is the estimated contribution of the first

common factor for the total sample variance. (Johnson and Wichern,
2007).
In case where there are many high loadings in a given factor com-

plicating the selection of a single variable to represent the set of vari-
ables series, factor scores series can be calculated for creating smaller
set of variables series to replace the original set. Factor scores series
representative of the original variable series with high loadings in a
given factor are computed based on the factor loadings of all variables
on the factor (Hair et al., 2010). The factor scores f̂ j are estimated
values for the unobserved random factor vectors Fj, with j=1, 2, …, n,
that is, f̂ j is the estimate of the values fj attained by Fj. The factor scores
can be calculated by Weighted Least Squares or Regression methods
(Johnson and Wichern, 2007).
The key issue in PCFA is to know the number of factors (m) to be

retained because, according to Haylton et al. (2004), specifying too few
factors or too many factors are substantial errors that affect the results,
although specifying too few is considered more severe. When extracting
factors employing the correlation matrix (R), the Kaiser's rule (1960)
can be used, where the factors with eigenvalues greater than 1 will be
retained. Still, the initial factor loadings can be rotated through many
rotation methods, each one using a different algorithm in the search for
the factor structure simplification. Orthogonal rotation produces factors
that are uncorrelated (i.e., maintain a 90° angle between axes), being
more easily interpretable. There is a wide variety of orthogonal rotation
types - equimax, varimax, quatmax orthomax, although varimax is the
most used because it was developed as an improvement in the quar-
timax and equamax algorithms (Osborn, 2015).
Step 6: Mathematical modeling of the q factor scores series re-

presentative of j original metrics with the use of DOE-M. Each one of the
p observations of the q factor scores series represented a response re-
lated to a given set of combined residues and, consequently, to a given
set of weights in simplex lattice design {q, m} selected in Step 3. The
sets of weights defined in Step 3 combined with the responses (com-
ponents) produced in Step 5 determined the experimental design of
mixtures and, therefore, the designs of the response surfaces, one for
each series of factors scores series, from which were extracted the
mathematical models (objective functions). In design of experiments,
the exploration of the response surfaces ϕFS1, ϕFS2, …, ϕFSq over the
simplex region design will provide the respective polynomial equations

ˆFS w( )1 ,ˆFS w( )2 ,ˆFS w( )3 , …,ˆFS w( )q which represents the surface over
the region of interest. Which w represents a given set of weights formed
by the weights of each of the z forecast methods selected. For each
selected w, the objective functions will give as responses, respectively,

the predicted values ofˆFS w( )1 ,ˆFS w( )2 ,ˆFS w( )3 , …,ˆFS w( )q .
The main goal of DOE-M is to try to model the dependence of the

response variable on the relative proportions of the components with
some form of mathematical equation (Cornell, 2002; Coronado et al.,
2014). As a special type of response surface, in DOE-M the factors are
the mixture components, and the response n is a function of the pro-
portions wi of each component in the mixture, with wi≥0 and

= + + + == w w w w 1i
q

i q1 1 2 , where i=1, 2, …, q, with q being the
number of components in the mixture (Cornell, 2002; Myers et al.,

2009). These constraints for wi provide the geometric description of the
factor space Sq−1 (experimental region) containing q components, with
each component representing a space vertex. The factor space consists
of all points on or inside the boundaries (vertices, edges, faces etc.) of a
regular (q - 1) dimensional simplex. Thereby, the set of points defined
in an experimental region describes the possible proportions for the
mixture components. The uniformly spaced distribution of points on a
simplex is known as a lattice. In a simplex-lattice design {q, m}, the
number of points in the design depends not only on the number of
components (q) in the mixture, but also on the degree (m) of the
polynomial model. Considering that the proportions assumed by each
component take the m + 1 equally space values form 0 to 1, that is

= …w 0, , , , 1i m m
1 2 , plus the simplex-lattice{q, m} consists of all possible

combinations (mixtures) of components, the number of design points in
the simplex-lattice {q, m}will be = +N q m

m q
( 1) !

! ( 1) ! (Cornell, 2002; Myers
et al., 2009).
The set of n responses give rise to a response surface ϕ. Therefore,

there is a functional relationship n=ϕ(w1, w2, ….,wq), which exactly
describes the surface ϕ, with n dependent on the proportions w1, w2, …,
wq of the q components. Generally, polynomial functions are used to
represent the response surface ϕ(w1, w2, …, wq). The justification being
that one can expand ϕ (w1, w2, …, wq) using a Taylor series, and thus a
polynomial can be used also as an approximation (Cornell, 2002, 2011).
The parameters in the {q, m} polynomials are estimated as observed
values' functions of responses at the points over {q, m} simplex-lattice
designs (Cornell, 2011). So, there is a correlation between the number
of points in the simplex and the number of terms in the polynomial
(Oliveira et al., 2011). Therefore, the properties of the polynomials
used to estimate the response function depend to a substantial extent on
the specific experimental design. Normally, the canonical form of the
polynomial (or Scheffé form) that can be used to fit the data and build a
model (objective function) from a mixture experiment can be, for ex-
ample, quadratic, as in Eq. (3) (Myers et al., 2009).

= = + + +
= < =

n E y w w w( )
i

q

i i
i j

q

ij i j0
1 2 (3)

Step 7: Once the mathematical objective functions of the q factor
scores series have been modeled leading to the creation of multiple
mixture response surfaces, one for each factor scores function, these
multiple surfaces will need to be combined into a multi-objective op-

timization problem. After,ˆFS1 (w),ˆFS2 (w), …,ˆFSq (w) functions
were simultaneously optimized using the NBI, being that the joint op-

timization of …ˆ ˆˆFS w FS w FS w( ), ( ), , ( )q1 2 in reality represented the
joint optimization of the j original metrics represented by them. Thus,
each of the v Pareto-optimal solutions found using NBI and, conse-
quently, each of the v sets of optimal weights found represented a point
at the Pareto frontier in which it would not be possible to reduce the
value of one of those metrics without causing the simultaneous increase
of, at least, another metric.
In contrast to single-objective optimization (SOP), which only has

one global optimum response, a multi-objective optimization problem
(MOP) involves simultaneous multiple objectives' optimization and
generates, rather than a single optimal solution, several Pareto-optimal
solutions, where no solution can be considered better or worse than the
others. This way, multi-objective optimization algorithms can search
for and gather a series of optimal solutions for a problem with more
than one objective at the same time, without either being considered
better or worse than the other (Du et al., 2017). Therefore, a vector of
viable solutions (x) is Pareto-optimal if there is no other feasible point y
to reduce any of the objective functions without causing the simulta-
neous increase of, at least, another objective function (Vahidinasab
et al., 2010). This set of optimal non-dominated solutions (x) form the
Pareto frontier or surface. That is, the set which includes values of the
Pareto-optimal solutions is called the Pareto-optimal front. (Wang et al.,
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2018). The Eq. (4) describes a minimization of regular multi-objective
optimization problem (Wang et al., 2017; Du et al., 2017).

= …Minimize F X f x f x f x: ( ) { ( ), ( ), , ( )}1 2 0

= …Subject to g x j m: ( ) 0, 1,2, ,j

= = …h x j p( ) 0, 1,2, ,j

= …L x U j n, 1,2, ,j j j (4)

where n, o, m and p represent the number of the variables, objective
functions, inequality constraints and equality constraints, respectively;
gj and hj are the j-th inequality and equality constraints; and [Lj, Uj]
stand for the boundaries of j-th variable.
The definitions of Pareto dominance, Pareto optimality, Pareto-op-

timal set and Pareto-optimal are respectively given by Equations
(5)–(7) e 8 (Wang et al., 2017; Du et al., 2017).
Taking two vectors, x = (x1, x2, …, xn) and y = (y1, y2, …, yn), x

dominates y (Pareto dominance), that is, x > y if:

i n f x f y i n f x[1, ], [ ( ) ( )] [ [1, ]: ( )]i i i (5)

The Pareto-optimal x belongs to X if:

>y XF y F x( ) ( ) (6)

A Pareto-optimal set is defined as:

>P x y X F y F x: { , ( ) ( )}s (7)

A Pareto-optimal front is a set including the value of objectives
functions for Pareto solutions set:

=P F x x P{ ( ) }f s (8)

NBI, introduced by Das and Dennis (1998), is an optimization rou-
tine traditionally used to generate a near-uniform spread Pareto frontier
for MOPs – regardless to the distribution of weights – on which the
multiple solutions with gradual trade-offs in the objectives are obtained
(Ganesan et al., 2013; Lopes et al., 2016). Another advantage of the NBI
is its scales' independence of different objectives functions (Jia et al.,
2007; Shukla, 2007). The first step in the NBI method is the calculation
of the Payoff matrixΦ elements for m objectives functions, as in Eq. (9).
The Φ will be a (m x m) matrix calculated by obtaining the individual
minimum value of each objective function fi(x). The solution that
minimizes the i-th objective function fi(x) is f x( ),i i which indicates
the minimum of fi(x) obtained in the point x .i Thus, xi is the solution
that minimizes fi(x), with (i=1, …, m). The remaining elements of
each row of the Φ, f x( ),i i are calculated by replacing each optimal
point xi obtained, in all other objective functions. In the Payoff matrix,
these values are represented by f x( ),i1

… … …+f x f x f x f x( ), , ( ), , ( ), , ( ).i i i i i m i2 1 1 Therefore, each row of the
matrix Φ consists of optimal values f x( )i i and non-optimal values
f x( )i i of the i-th objective function, indicating the upper and lower
limits of these objective functions (Vahidinasab et al., 2010; Brito et al.,
2014).

=

…

… …

f x f x f x

f x f x f x

f x f x f x

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

i m

i i i i m

m m i m m

1 1 1 1

1

1 (9)

The Utopia points are generally points outside the feasible region
and they can be represented by vector

= … …f f x f x f x f x[ ( ), ( ), , ( ), ., ( )]i
U

i i m m
T

1 1 2 2 . They are formed by the
global minimum value of each i-th optimized objective function (the
best values in each row of the Φ). The components of the vector fi

U will
form the main diagonal of the Φ. In addition, the Nadir points, re-
presented by vector = … …f f f f f[ , , , , , ]i

N N N
i
N

m
N T

1 2 , are the worst values
found for each i-th objective function (worse values of each row of the

Φ) (Utyuzhnikov et al., 2009; Vahidinasab et al., 2010). After defining
the Utopia and Nadir points, the objective functions must be normal-
ized, especially if they are in different scales or represent different
meanings. The normalization allows getting the Pareto-optimal solu-
tions that represent the Pareto frontier (Vahidinasab et al., 2010). These
normalized values can be calculated as in Eq. (10), and they are sub-
sequently used to define the elements of a normalized payoff matrix ¯
in Eq. (11).

= = …f
f x f
f f

¯ (x)
( )

, i 1, , mi i
U

i
N

i
U (10)

=

…

… …

f f f x

f f f x

f x f x f x

( )

( )

( ) ( ) ( )

m

i i i m

m m i m m

1 1 1

1 (11)

The convex combinations of each row of the normalized payoff
matrix ¯ will form the set of points in “The Convex Hull of Individual
Minima” (CHIM), also called the Utopia line for bi-objective problems.
In multi-objective problems with more than two objective functions, the
anchor points will form a Utopia hyperplane. Considering the bi-ob-
jective problem, the Utopia line is drawn by connecting the two anchor
points, that is, points obtained when the i-th objective function is
minimized independently. Points as a, b and e divide the straight Utopia
line (the CHIM) into equal and proportional segments within the nor-
malized space (Jia et al., 2007; Shukla et al., 2007; Vahidinasab et al.,
2010; Brito et al., 2014). The anchor points, in addition to defining the
ends of the Utopia line, also define the ends of the Pareto Frontier
(Fig. 4).
The next step is to find equidistant points in the Utopia line. They

can be calculated by using ¯ (Eq. (11)), making Wi , with Wi being a
convex weight vector Wi , used to obtain a uniformly distributed set of
efficient points (Shukla et al., 2007; Jia et al., 2007). Finally, con-
sidering n̂ the normal direction unit, with a distance D to be maximized,
starting from a pointWi on the Utopia line, toward the origin, then ¯

+W Dn̂i is the vector equation of an orthogonal straight line to a sur-
face or plane formed, with D R; Wi being the position vector; n̂, a
direction vector; and D, a scalar. The point where the line formed in-
tersects the boundary of feasible region closest to the origin will cor-
respond to the maximization of the distance (D) between the Utopia
line and the Pareto frontier, and, therefore, will mark a point of optimal
solution on Pareto frontier. (Shukla et al., 2007; Utyuzhnikov et al.,
2009). Eq. (12), adapted from Jia et al. (2007), shows the maximization
of distance (D):

= + = =:t s t W Dn F x h x b x aMax D . . ˆ ¯ ( ) ( ) 0
x t

i
, (12)

The constraint +W Dn̂i ensures that the point x is mapped toward a
point on the normal, while the other constraints guarantee the feasi-
bility of x considering the original problem multi-objective (MOP) (Jia
et al., 2007; Ahmadi et al., 2015). VaryingWi will lead to equidistant
points on the Pareto frontier, as can be seen in Fig. 4. Hence, the op-
timization problem described by Eq. (12) can be solved repeatedly for
different values of Wi , creating a Pareto frontier evenly distributed with
equidistant points (Vahidinasab et al., 2010; Brito et al., 2014). For a bi-
objective problem, D can be eliminated of the Eq. (12), originating the
simplified Eq. (13), where f x( )1 e f x( )2 are the normalized f1(x) e f2(x)
functions (Brito et al., 2014).

+ =Min f x subject to f x f x w g x w¯ ( ) : ( ) ( ) 2 1 0 ( ) 0 0

1
j1 2

(13)

The NBI generates several Pareto-optimal solutions, with each so-
lution being originated from a different set of weights (Wi), without
that a Pareto-optimal solution could be considered better or worse than
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the other. In order to find the best solution among the various Pareto-
optimal solutions it was used Shannon's Entropy Index (S) in combi-
nation with Global Percentage Error (GPE). For each one of the v
Pareto-optimal solutions obtained in the previous step, it was calculated
the respective GPETotal, using Eq. (14), and STotal, using Eq. (15). After,
the best set of weights and, consequently, the best solution was defined
as the one that presented the highest relation (STotal/GPETotal). Each
GPE's Pareto-optimal solutions are calculated defining how far the
analyzed point (yi ) is from the objective function's ideal value, namely
the target (Ti) (Rocha et al., 2015):

=
=

GPE
y
T

1Total
i

m
i

i1 (14)

where:

yi Value of Pareto optimal responses;
T targets defined;i
m Number of objectives.

(S) is used to diversify the weights in the context of multi-objective
optimization. In order to diversify the weights belonging to each Wi,
used to attribute weights to the objective functions in the NBI, (STotal) is
calculated according to Eq. (15):

=
=

S x w w( ) ln( )Total
i

m

i i
1 (15)

One can choose as the best point for a given problem to the one in
which the relation (S/GPE) has the highest value (Rocha et al., 2015).
Step 8: After the weights of the FA-NBI combination method were

obtained using the above strategic, the set of weights were also calcu-
lated using some of the more traditional weighting schemes found in
the literature. The weights were estimated using regression-based
method (RB) by Granger and Ramanathan (1984) and variance-covar-
iance weighting methods by Bates and Granger (1969), extended by
Dickson (1973) for more than two methods in combination, considering
two procedures: one with covariance (BG/D with COV); other without
considering the covariance (BG/D without COV). The results presented
by these methods were compared with the FA-NBI in terms of perfor-
mance and precision, as well as with those presented by these other
forecast combination methods, in addition to comparing with those
presented by simple average (AVG), in which equal weights are

assigned for all methods, and with individual methods used to combine.
Bates and Granger (1969) used two procedures - one considering cov-
ariance (ρ) between the errors of two individual methods in Eq. (16),
and another without considering it (ρ=0) in Eq. (17) - with the ob-
jective of estimating w1 and, by difference, w2 weights (w2=1 - w1) to
combine two forecasting methods. The method developed by them was
intended to give greater weight to the set of forecasts that seemed to
contain the lower mean-square errors, minimizing the overall variance.

=w1
2
2

1 2

1
2

2
2

1 2 (16)

=w1
2
2

1
2

2
2 (17)

In Equations (16) and (17), 1
2 and 2

2 are the variance of errors for
two forecasts, 1 and 2 are the respective standard deviations and ρ is
covariance between the errors of method 1 and 2.
Dickson (1973) extended the results of Bates and Granger (1969) to

combinations of n forecasts using the matrix form in Eq. (18), where
(w=w1, w2, …, wn) is the vector of n weights, Σ is the variance-cov-
ariance matrix of forecast errors (n x n), and (In) is the (n × 1) matrix
with all elements equal to 1.

=w I I I( )n n n
1 1 1 (18)

Granger and Ramanathan (1984) proposed three different com-
bining procedures to find the weights minimizing the sum of squared
forecast errors using linear regression. The first without restrictions
with respect to the weights (Eq. (19)), the second considering the case
in which the weights are constrained to worth one (Eq. (20)), and the
third has no restrictions on the weights, but a constant term (w0) is
added (Eq. (21)).

= + +y w y w yˆ ˆ ˆt t t t1
1

1
2 (19)

= + + + =y w y w y s t w wˆ ˆ ˆ , . . 1t t t t1
1

1
2

1 2 (20)

= + + +y w w y w yˆ ˆ ˆt t t t0 1
1

1
2 (21)

where ŷt is the combined forecast in period t, ŷt
1 and ŷt

2 are the 1 and 2
methods forecasts in period t, ℇt is the error term, w1 and w2 are the
weights (coefficients) assigned to method 1 and 2 in the regression
model, and wo is the constant term.
In sequence, to verify if there were statistically significant

Fig. 4. Graphical description of NBI method.
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differences of predictive accuracy between two different competing
forecasts methods we used DM test, proposed by Diebold and Mariano
(1995). In the present paper, the statistic differences of the predictive
accuracy were measured between the combination obtained (FA-NBI)
and the individual methods that were combined, as well as between the
FA-NBI and the four other weighting methods - AVG, LSE, BG/D with
COV and BG/D without COV. For one-step ahead forecasts, the DM test
is computed considering the errors series of the two comparison models
– (e1) and (e2) series. The Appendix D brings more details about DM
test.

3. Results and discussion

Thus, in order to find the optimal weights of a combination of time
series methods (the FA-NBI combination) to be used to predict coffee
demand in the Brazilian domestic market in the periods from 2006/
2007 to 2017/2018, the methodology described in section 3 was ap-
plied as it follows:
Step 1: The Time Series Plot of the original series of coffee domestic

consumption data in Brazil from 1964/1965 to 2017/2018 annual
period (Yt series) is shown in Fig. 5. These data were made available by
the ICO (2018). In order to validate the methods of time series to be
tested, the consumption of coffee data for the annual periods from
2006/2007 to 2017/2018 were left out from Yt series' sample to per-
form the out-of-sample analysis. Thus, the tested methods were fit
considering only the fitting data segment between 1964/1965 and
2005/2006, with the Yt series having 42 observations to perform the in-
sample analysis. The residues of each forecast method were calculated
from this last period and the prediction errors were calculated from the
period left out from Yt series' sample.
The Yt series' observations did not follow a normal distribution, as

demonstrated by the Anderson-Darling normality test in Fig. 6. Even so,
it was not decided to transform it mathematically because, according to
Makridakis et al. (1998), such procedure would only be justified if the
data showed strong tendency at the same time with a strong seasonal
pattern whose variation increases with time. As can be seen in Fig. 5,
there is a strong upward trend, but there is no seasonal pattern whose
variability grows over time in conjunction with this trend. The Yt series
did not contain missing values or redundant observations, no ob-
servation needed to be removed or appended. Additionally, the Dixon's
r22 ratio outlier test (Dixon, 1950) was performed, and on the sig-
nificance level of 0.05 did not detect the presence of suspected outliers
in Yt series (P-Value as 1 and r22 statistic as 0.15), taking into account
the smallest data value or the largest date, with p-value being 1.
Step 2: Four methods (z=4) were chosen to take part in the

weighted combination: Double Exponential Smoothing method (DES),

Holt-Winter's multiplicative (WM), and Autoregressive Integrated
Moving Average models ARIMA(1,1,1) and ARIMA(2,2,3). The choice of
these methods occurred due to the good adjustment to the Yt series. A
brief review of these time series methods is given in Appendix A. For
the DES method, the optimal values for the smoothing parameters α
and β (computed by fitting an ARIMA(0,2,2) model) were 1.31541 and
0.15515, respectively. Considering the WM method, the optimal values
found for α, β and γ (chosen by minimizing the MAE) were 0.75, 0.60
and 0.30, respectively, with length of seasonality 2 (s=2). Regarding
the Box-Jenkins methodology (ARIMA), in the data preparation phase,
the original Yt series proved be nonstationary. For this specific appli-
cation, it was necessary to differentiate Yt in data preparation and
model selection phases. However, the differentiated Yt-1 series seemed
to follow growing trend from the twenty observations. For this reason,
the Yt-1 series was differentiated for a second time, resulting in the Yt-2

series. As a result, two ARIMA models were selected and specified: the
first model, with the use of Yt-1 series differentiated once (d=1), and
the second model with the Yt-2 series differentiated a second time
(d=2). The p and q orders of the two selected ARIMA models (p=1/
q=1 for ARIMA(1,1,1), and p=2/q=3 for ARIMA(2,2,3) were obtained
through the Autocorrelation (ACF) and Partial Autocorrelation (PACF)
functions and simulations in Minitab®, to obtain models with smaller
MAE and VAR of the residuals. Tables 3 and 4 show the calculated
coefficients (Coef) and the significance test of each parameter.
No correlations were detected in the residues generated for each of

the 4 forecast methods, being the correlations considered statistically
equal to zero. The P-values of Run-Chart test done over the
ARIMA(1,1,1), ARIMA(2,2,3), DES and WM's residues series did not detect
trends (0.500; 0.920; 0.809 and 0.159), oscillation (0.500; 0.080; 0.191
and 0.841), mixtures (0.561; 0.168; 0.106 and 0.826) and clustering
(0.439; 0.832; 0.894 and 0.826) in their data, since all P-values were
greater than 0.050. The Augmented Dickey-Fuller statistic test, with P-
Values< 0.05 (0.000; 0.0000; 0.0000 and 0.008) proved that the re-
sidues series had no unit root and the process could be considered
statistically stationary. Besides that, P-Values for the Anderson-Darling
normality test were greater than the chosen significance level of 0.05
for ARIMA(1,1,1) (0.073), ARIMA(2,2,3) (0.344) and DES (0.132)
methods, accepting the hypothesis that the residues following a normal
distribution. With tests carried out so far, the residues series of theses
three methods proved to be Gaussian white noise, with uncorrelated
observations, constant variance and normally distributed, which can be
verified in the time series plot of residues in Fig. 7. Although WM did
not present residues normally distributed, it has been decided to keep it
because of the good results found in the statistics tests (see Fig. 8).
Based on the in-sample performance analysis, considering the

period from 1964/1965 to 2005/2006 the ARIMA(2,2,3) presented, on
average, the best performance and precision (less residues' dispersion)
from the ARIMA(1,1,1), DES and WM, as can been observed in Table 5.
Moreover, in the in-sample period, the VAR and SD, calculated based on
the residues of ARIMA(2,2,3), were lower than in the other methods,
which indicated that the selection of this method to forecast future
periods was less risky. This means that the decision maker, initially not
taking into account the strategy of combining the individual methods,
would choose the ARIMA(2,2,3) to forecast coffee demand in the Brazi-
lian market for the subsequent periods (2006/2007 to 2017/2018).
Step 3: A Simplex-Lattice Design {4,5} with four components and

lattice degree 7 was created, composed of 4 vertices in 3 (4-1) dimen-
sions, augmented with one center point, four axial points and with one
replicate, which resulted in 61 sets of weights (p=61). These 61 sets of
weights can be observed in Table C1 in Appendix C. The 61wt sets were
used to combine 42 observations (g=42) of the 4 series of residues
(components) for the four selected methods. In this way, these 61 wt
sets were used to produce 61 weighted sets of combined residues of the
4 forecast methods chosen, with each observation of each series being
calculated using Eq. (1). The geometric description of the experimental
region containing the 4 components is shown in Fig. 9a, with each

Fig. 5. Yt series for the evolution of domestic consumption of coffee in Brazil
(ICO, 2018).
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Fig. 6. Summary report for Yt series.

Table 3
Coefficients and significance test of the estimated parameters of ARIMA(1,1,1).

Parameter Coef SE Coef T P

AR 1 0.8999 0.1218 7.3900 0.0000
MA 1 0.5075 0.2089 2.4300 0.0020

Table 4
Coefficients and significance test of the estimated parameters of ARIMA(2,2,3).

Parameter Coef SE Coef T P

AR 1 −1.2374 0.2241 −5.5200 0.0000
AR 2 −0.4898 0.2104 −2.3300 0.0260
MA 1 −0.9104 0.2110 −4.3100 0.0000
MA 2 −0.5008 0.2061 −2.4300 0.0200
MA 3 0.7409 0.1461 5.0700 0.0000

Fig. 7. Residues' time series plot of forecast methods (in thousands 60 kg bags).

Fig. 8. Real coffee consumption and forecasting methods' fits to historical data
(in thousands 60 kg bags).

Table 5
Comparison between individual methods on the in-sample analysis.

Metrics DES WM ARIMA(1,1,1) ARIMA(2,2,3)

MAE 267.9937 280.3940 260.5738 243.8930
MSE 128,080.9566 153,362.5660 128,743.9337 100,477.9804
RMSE 357.8840 391.6153 358.8090 316.9826
MASE 1.0988 1.1497 1.0684 1.0000
RMSPE 4.4852 4.8891 4.4591 3.9684
MAPE 3.2405 3.3531 3.1188 2.9461
sMAPE 0.0328 0.0340 0.0316 0.0296
U1 0.0188 0.0206 0.0189 0.0167
U2 0.0376 0.0411 0.0377 0.0333
VAR 129,539.4380 156,803.8746 129,075.6035 102,036.0894
SD 359.9159 395.9847 359.2709 319.4309
MdAE 243.6130 173.5543 211.0836 207.2514
MdAPE 2.5630 2.1440 2.3914 2.2063
sMdAPE 0.0256 0.0214 0.0239 0.0221
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component representing the vertex of a tetrahedron with four plane
triangular faces. The set of the points defined in the simplex lattice
region describes the possible proportions of the mixtures to combine the
components. The simplex lattice in the four plane triangular faces of the
tetrahedron is shown in Fig. 9b.
Step 4: Fourteen (j=14) (MAE, MSE, RMSE, MASE, RMSPE, MAPE,

sMAPE, U1, U2, VAR, SD, MdAE, MdAPE and sMdAPE) were calculated
for each of the 61 combined residues series. The benchmark method
(random walk) chosen was the ARIMA(2,2,3), since it was the individual
method that obtained better accuracy and lower variability of the re-
siduals in-sample analysis (Table 5).
Step 5: The PCFA was used to further dimensionality reduction,

using principal components. As can be seen in the Table 6, only PC1 and
PC2 presented eigenvalues greater than one, determining the extraction
of only 2 factors (q=2) based on Kaiser's rule (1960).
Table 7 presents the sorted rotated factor analyze model generated

with the use of principal components, Varimax rotation as extraction
method and based on correlation matrix of the 14 metrics.
The factor analyze model in Table 7 and the loading plot in Fig. 10

showed that MAE, MSE, RMSE, MASE, RMSPE, MAPE, sMAPE, U1, U2,
VAR and SD metrics defined Factor 1 because they had high loadings on
it and small or negligible loadings on Factor 2. While MdAE, MdAPE
and sMdAPE metrics defined Factor 2 because it had high loading on it
and small or negligible loadings on Factor 1. The high values of com-
munalities in Table 7 displayed that the two factors together explain a
high percentage of variability from each metric. In addition, total factor
model explained 97.6% of the total variance of these 14 metrics, which
demonstrated that it properly represented them. Because there were
many high loadings in Factors 1 and 2, two factor scores series were
produced – FS1 and FS2. FS1 series represented MAE, MSE, RMSE,
MASE, RMSPE, MAPE, sMAPE, U1, U2, VAR and SD metrics, and FS2
series represented MdAE, MdAPE and sMdAPE. The dendrogram in
Fig. 11 and the loading plot in Fig. 10 confirmed these representations.

The dendrogram, in Fig. 11 was generated through the use of Ward's
linkage method with absolute correlation distance measure in cluster
analysis to discover natural groupings of the items (or variables) based

Fig. 9. (a). Experimental region represented by four-component tetrahedron. (b). Simplex-Lattice design {4, 5} on the four plane triangular faces of a tetrahedron.

Table 6
Correlation matrix's eigenanalysis.

Principal Components PC1 PC2 PC3 PC4 PC5

Eigenvalues 10.438 3.227 0.226 0.102 0.003
Proportion 0.746 0.230 0.016 0.007 0.000
Cumulative 0.746 0.976 0.922 0.999 1.000

Table 7
Factor analyze model.

Function Loadings Communalities

Variable Factor 1 Factor 2

RMSPE 0.995 −0.069 0.994
MSE 0.993 −0.079 0.993
U1 0.993 −0.064 0.990
U2 0.993 −0.072 0.991
RMSE 0.993 −0.072 0.991
SD 0.992 −0.105 0.994
VAR 0.991 −0.112 0.995
MASE 0.936 0.318 0.976
MAE 0.936 0.318 0.976
sMAPE 0.927 0.341 0.975
MAPE 0.911 0.370 0.967
sMdAPE 0.088 0.977 0.962
MdAPE 0.069 0.971 0.948
MdAE −0.116 0.948 0.911
Variance 10.366 3.299 13.665
% Var 0.740 0.236 0.976

Fig. 10. PCFA loading plot of 14 metrics, FS1 and FS2.
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on minimizing the ‘loss of information’ from joining two groups taken
to be an increase in an error sum of squares criterion (Johnson and
Wichern, 2007). The FS1 and FS2 series can be viewed into the ex-
perimental design in Table C1 and C2 in Appendix C.
As can be observed in Tables 8 and 9, FS1 and FS2 showed positive

correlation with the metrics that each represented. This fact determined
that the objective function to be modeled of FS1 and FS2 with the use of
DOE-M should be minimized together when applying the NBI routine in
Step 7 to calculate Nadir and Utopia points in Payoff matrix (Φ).
Step 6: The 61 sets of weights combined with FS1 and FS2 series

formed the experimental design (shown part in Table C-1 in Appendix C
at the end of this article), and, consequently, the designs of the response
surfaces ϕFS1, for FS1 series, and ϕFS2, for FS2 series. Figs. 12 and 14
demonstrate a three-dimensional view that may provide a clearer pic-
ture of the response surfaces (3D Surfaces Plots) generated through of
experimental design. The exploration of the response surfaces ϕFS1 and
ϕFS2 over the simplex region design provided the proper polynomial

quadratic mixture (functions objectives)ˆFS1 (W) (Eq. (22)) andˆFS2
(W) (Eq. (23)) to approximate the surface over the region of interest. In
both cases, the model fitting method was a mixture regression with
backward eliminator; analyze components in pseudocomponents and

quadratic terms.ˆFS1 (W) andˆFS2 (W) responses values denote, re-
spectively, the predicted or estimated value of FS1 and FS2 responses for
a given set of weights W (w(1,1,1), w(2,2,3), w(DES) and w(WM)).

= + +

× ×

× ×

× ×

ˆ WFS w w w w

w w w w

w w w w

w w w w

( ) 0.984 3.025 0.764 1.450

5.288( ) 0.889( )

1.582( ) 2.048( )

7.403( ) 3.141( )

DES WM

DES WM DES

DES WM

WM

1 (1,1,1) (2,2,3)

(1,1,1)

(2,2,3) (1,1,1)

(2,2,3) (1,1,1) (2,2,3) (22)

= + +

× ×

× ×

×

ˆ WFS w w w w

w w w w

w w w w

w w

( ) 1.950 0.864 1.237 0.638

3.311 1.564

2.935 7.343

2.980

DES WM

DES WM DES

WM WM

2 (1,1,1) (2,2,3)

(1,1,1)

(1,1,1) (2,2,3)

(1,1,1) (2,2,3)
(23)

Mixture Contour Plots in Figs. 13 and 15 show ranges of intervals

containing the values assumed respectively byˆFS1 (W) andˆFS2 (W),
as well as the corresponding set of weights at each point of the Figure.

Regarding the adjustment of the models, forˆFS1 (W) function the
R2Adj (adjusted coefficient of multiple determination R2) was 99.79%,
which means that it explained about 99.79% of the variability observed

Fig. 11. Dendrogram for similarities of 14 metrics, FS1 and FS2.

Table 8
Positive correlations between MAE, MSE, RMSE, MASE, RMSPE, MAPE, sMAPE, U1, U2, VAR and SD with FS1.

MAE MSE RMSE MASE RMSPE MAPE sMAPE U1 U2 VAR SD

FS1 0.936 0.993 0.993 0.936 0.995 0.911 0.927 0.993 0.993 0.991 0.992
FS2 0.318 −0.079 −0.072 0.318 −0.069 0.370 0.341 −0.064 −0.072 −0.112 −0.105

Table 9
Positive correlations between MdAE, MdAPE and sMdAPE with FS2.

MdAE MdAPE sMdAPE FS1

FS1 −0.116 0.069 0.088 1.000
FS2 0.948 0.971 0.977 0.000

Fig. 12. Mixture surface plot ofˆ WFS ( )1 .

Fig. 13. Mixture contour plot ofˆ WFS ( )1 .
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in the responses. TheˆFS2 (W) function explained about 88.65% of the
variability in the responses. In relation to the R-Sq (PRED), statistic that
gives some predictive indication capability of the regression model, the

ˆFS1 (W) explained about 99.72% of the variability in predicting new

observations, whileˆFS2 (W) explained 85.41%. Therefore, all the
models have a satisfactory overall predictive capability to explain a
high percentage (99.72% and 85.41%) of the variability in new data.
The Run-Chart residues' series did not detect trends (0.055 and 0.050),
oscillation (0.975 and 0.950), mixtures (0.740 and 0.740), and clus-
tering (0.260 and 0.260) in their data, since all P-values were greater
than 0.050. The Augmented Dickey-Fuller statistic test, with P-va-
lues< 0.05 (0.000 and 0.000), proved that the residues series has not
unit root, and the process can be considered statistically stationary.

Besides that, forˆFS1 (W) andˆFS2 (W) the P-values for the Anderson-
Darling test were greater than the chosen significance level of 0.05
(0.898 and 0.829), accepting the hypothesis that the residues following
a normal distribution. With tests carried out so far, the residuals series

ofˆFS1 (W) andˆFS2 (W) proved be Gaussian white noise, with un-
correlated observations, constant variance and normally distributed.
Table 10 shows the ANOVA for theˆ WFS ( )1 andˆ WFS ( )2 quadratic

models. The P-Values revealed that all terms ofˆ WFS ( )1 were statisti-
cally significant at a 5% level.ˆ WFS ( )2 presented one term with P-Value
slightly higher than 0.05 (0.096), but it was decided to useˆ WFS ( )2
because the tested model with the term's exclusion did not show better
statistical results.
The trace curves of each component in Cox trace plots in Figs. 16

and 17 presented how the changes' proportions from each of the four
components (wDES, wWM, w(1,1,1) and w(2,2,3)) in the mixture designs

affected, respectively,ˆFS1 (W) andˆFS2 (W) estimated responses. In
each response trace plot, the intersection of four lines represented the
reference blends of ¼. Moving from zero to the right shows the relative
proportion of a component increasing and moving from the left to zero
shows the relative proportion of a component decreasing, as the other
components are held in equal proportions. In Fig. 16 it can be seen that
when the proportion of ARIMA(2,2,3) increases in the mixture (in the

combination), the value ofˆFS1 (W) decreases, and when the ratio of

ARIMA(1,1,1), DES or WM increases the value ofˆFS1 (W) increases.
Considering Fig. 17, when the proportion of DES and ARIMA(1,1,1), in-

creases in the mixture,ˆFS2 (W) predicted response also increases, and

when the proportion of WM increases,ˆFS2 (W) decreases. Initially

additions of ARIMA(2,2,3) in the combination decrease theˆFS2 (W)
responses, but from a certain proportion (about 0.2) increase the values
thereof.
Step 7: NBI was applied for problem optimization. The Payoff ma-

trix (Φ) was calculated, according to Eq. (9), resulting in the matrix
shown in Eq. (24), where the main diagonal was formed by the optimal

values of theˆFS1 (W) andˆFS2 (W) individual minimization, that is, by
the Utopia points. The Nadir points formed the secondary diagonal.
FS W( )1 and FS W( )2 normalized objective functions were then per-
formed as in Eq. (25), using Eq. (10).

= 1.739 0.528
0.824 2.025 (24)

=
=

=

ˆ
ˆ

FS w

FS w
F x¯ ( )

( )

( )

FS w

FS w

1
( ) ( 1.739)

0.528 ( 1.739)

2
( ) (2.025)

0.824 ( 2.025)

1

2
(25)

The NBI minimization procedure was applied for the system of
equations as described in Eq. (13), employing the GRG algorithm and
using increments of 5% for the weight distribution (w). As though DOE-
M was used, the sum of the (w(1,1,1), w(2,2,3), wDES, wWM) variables is a
constraint and must be equal to 1. Table 11 presents the results found
for the NBI routine, with the normalized values FS W( )1 and WFS ( )2 ,

the predicted valuesˆFS1 (W) andˆFS2 (W), and the weights assigned
for each forecast methods. Fig. 18 display the Pareto frontier obtained
with these results.
In the 21 Pareto optimum solutions found, DES and ARIMA(1,1,1) did

not participate in the combination, since they added to the combination

(mixture) contributed to increase both the values ofˆFS1 (W) andˆFS2
(W) responses, as can be seen in Figs. 16 and 17. It is worth re-

membering that respectively increasing or decreasing the value ofˆFS1
(W) responses also means respectively increasing or decreasing MAE,
MSE, RMSE, MASE, RMSPE, MAPE, sMAPE, U1, U2, VAR and SD me-

trics. Likewise, increasing or decreasing respectively the value ofˆFS2
(W) responses also means respectively increasing or decreasing MdAE,
MdAPE and sMdAPE median performance metrics. In the Pareto op-
timal solution of (v=1), in the first line of Table 11, it was given zero

as weight toˆFS1 (W) objective function (wi=0) and one toˆFS2 (W)

(1 - wi=1), i.e. onlyˆFS2 (W) took part in the joint minimization

Fig. 14. Mixture surface plot ofˆ WFS ( )2 .

Fig. 15. Mixture contour plot ofˆ WFS ( )2 .
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process of the NBI. Consequently, to WM was given more weight in the
combination because it is the forecasting method that most contributes

to the minimization ofˆFS2 (W) as it is added to the combination (the
mix), which can be observed in Fig. 17. From the optimal solution

(v=1) to the other solutions, it can be seen that the more weight (wi) is

attributed toˆFS1 (W) and less weight (1-wi) toˆFS2 (W) in the NBI
process, the weight given to the ARIMA(2,2,3) increases and the WM
decreases in the other Pareto optimal solutions found (Table 11 and
Fig. 16). This is because it is ARIMA(2,2,3) which further decreases the

value ofˆFS1 (W) as more as it is being added in the combination, as in
Fig. 16.
Fig. 19-a shows that the larger the weight provided to the function

ˆFS1 (W) in the NBI process, the smaller theˆFS1 (W) responses. And so

thatˆFS1 (W) responses to be smaller, higher should be the ARIMA(2,2,3)
weight in the combination (Fig. 19-b). Taking SD for example, one of

the metrics that objective functionˆFS1 (W) represents, the smaller the

value ofˆFS1 (W) due to the increase of w(2,2,3) in the combination, the
lower is the SD value (Fig. 19-c). On the other hand, the higher wi, the

higher the values ofˆFS2 (W) responses (Fig. 19-d), since the weights of
WM in the combination will be smaller (Fig. 19-e). In addition, the
smaller the WM weights (wWM), the larger will be, for example,

MdMAE, which objective functionˆFS2 (W) represents (Fig. 19-f).
To find the best solution among the 21 Pareto-optimal solutions in

Table 11, for each one of them was calculated the respective STotal. In
this case, each set ofWi weights, with two weights each (wi and 1-wi) as
in Table 8, were diversified using Eq. (15). In order to calculate the

GPEtotal for each of the 21 Pareto-optimal responses, theˆFS1 (W) was
minimized, obtaining the minimum or target value (Tf1) of (−1.739). In

addition,ˆFS2 (W) was minimized, obtaining the minimum or target

value (Tf2) of (−2.025). Then, taking the values of theˆFS1 (W) and

ˆFS2 (W) Pareto-optimal responses in Table 11, GPEtotal was calculated
according to Eq. (14). Table 11 shows that the best combination (FA-
NBI combination), among the 21 Pareto-optimal solutions, was of
v=11, with weights of 0.400 assigned to WM and 0.60 to ARIMA(2,2,3),
since that this solution presented the highest relation (STotal/GPETotal)
(0.934). The FA-NBI's errors were normally distributed, with P-Value of
0.104 and (K-S) statistic of 0.124 in Kolmogorov-Smirnov normality
test. There was also no autocorrelation or partial autocorrelation be-
tween them. The Augmented Dickey-Fuller statistic test, with P-Va-
lues< 0.05 (0.003) and t-statistic of 5.457 proved that the residues
series had no unit root and the process could be considered statistically
stationary. The P-Values of Run-Chart test did not detect trends (0.691),
oscillation (0.309), mixtures (0.941) and clustering (0.059) in error's
series.
The forecast equation by the FA-NBI combination is described in Eq.

(26).

= +y y yˆ 0.40 ˆ 0.60 ˆt t tNBI FA WM ARIMA( ) (2,2,3) (26)

Table 10
ANOVAS forˆFS W( )1 andˆFS W( )2 .

Source ANOVA for quadratic model ofˆ WFS ( )1 ANOVA for quadratic model ofˆ WFS ( )2

DF Adj SS Adj MS F P-Value DF Adj SS Adj MS F P-Value

Regression 9 59.891 6.546 3123.65 0.000 8 54.098 6.762 58.580 0.000
Linear 3 21.598 7.199 3379.34 0.000 3 10.361 3.454 30.430 0.000
Quadratic 6 10.031 1.672 784.72 0.000 5 8.840 1.768 15.580 0.000
w(DES) x w(WM) 1 3.629 3.629 1703.35 0.000 1 1.458 1.458 12.840 0.001
w(DES) x w(1,1,1) 1 0.103 0.103 48.15 0.000
w(DES) x w(2,2,3) 1 0.325 0.325 152.40 0.000 1 0.325 0.325 2.870 0.096
w(WM) x w(1,1,1) 1 0.544 0.544 255.42 0.000 1 1.118 1.118 9.850 0.003
w(WM) x w(2,2,3) 1 7.112 7.112 3338.33 0.000 1 7.169 7.169 63.170 0.000
w(1,1,1) x w(2,2,3) 1 1.280 1.280 600.84 1 1.181 1.181 10.400 0.002
Residual Error 51 0.109 0.002 52 5.902 0.114
Error 60 60.000 60 60.000

Fig. 16. Cox trace plot of FS1 (W).

Fig. 17. Cox trace plot of FS2 (W).
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The overlaid contour plots (Fig. 20) displays that the optimal so-
lution found, represented in the line 11 of the Table 11 (v=11), lies

within the feasible region, since the restrictions referring toˆFS1 (w)

andˆFS2 (w) were all satisfied.
It should be noted that in addition to the solution of v=11 (the best

FA-NBI solution found) all the other 20 points of the Pareto frontier also
provided optimal solutions. The simultaneous multiple objectives' op-
timization point of v=11 was the best solution considering the highest
relation (STotal/GPETotal) criterion. This is what made the optimal so-
lution of v=11 the best solution to the problem, that is, to forecast
coffee demand in Brazil using FA-NBI combination method.
To illustrate this statement, the Fig. 21 shows the values of MAE,

RMSE, U2, MdMAE, sMdAPE and SD in each of the 21 Pareto-optimal
solutions, where each of these cannot be considered better or worse
than the others. In addition, it also shows the increase or decreases in
the values assumed by these metrics when moving from one Pareto-
optimal solution towards another. MASE, MAPE and sMAPE metrics do

not appear in the Fig. 21 because they presented the same evolution of
MAE. For the same reason, MSE and RMSPE were also omitted because
they were represented by RMSE. Similarly, U1 was represented by U2,
VAR was by SD, and MdAPE by sMdAPE. It is clearly seen that the
vector of feasible solutions (v=11) is Pareto-optimal, since there is no
feasible point which can reduce any of the objective functions (metrics)
without causing the simultaneous increase of, at least, another objective
function. As an example, it is noticed that it is not possible to reach a
solution in which SD or VAR is smaller (Fig. 21-f) without increasing
the RMSE value (Fig. 21-b) and, consequently, those of MSE and
RMSPE. Likewise, it was not possible to reduce SD or VAR without
increasing the value of U2 (Fig. 21-c) and therefore U1, which is re-
presented by U2 in Fig. 21.
Step 8: In out-of-sample forecasting analysis (cross-validation) was

done a comparative analysis between the made forecasts and the actual
coffee's consumption that took place for the periods 2006/2007 to
2017/2018. It was FA-NBI combination that got, on average, better
performance (accuracy) than DES, WM, ARIMA(1,1,1) and ARIMA(2,2,3),

Table 11
Optimization results and (S/EPG) relation for each Pareto-optimum response.

v wi 1-wi WFS ( )1 WFS ( )2 ˆ WFS ( )1 ˆ WFS ( )2
w(DES) w(WM) w(1,1,1) w(2,2,3) STotal EPG (Total) S/EPG

1 0.00 1.00 1.000 0.000 −0.528 −2.025 0.000 0.602 0.000 0.398 0.696 1.728 0.001
2 0.05 0.95 0.903 0.003 −0.646 −2.022 0.000 0.582 0.000 0.418 0.630 1.621 0.137
3 0.10 0.90 0.810 0.010 −0.758 −2.013 0.000 0.562 0.000 0.438 0.570 1.518 0.248
4 0.15 0.85 0.723 0.023 −0.864 −1.998 0.000 0.542 0.000 0.458 0.517 1.419 0.355
5 0.20 0.80 0.640 0.040 −0.964 −1.977 0.000 0.521 0.000 0.479 0.469 1.324 0.463
6 0.25 0.75 0.563 0.063 −1.058 −1.950 0.000 0.501 0.000 0.499 0.429 1.234 0.570
7 0.30 0.70 0.490 0.090 −1.146 −1.917 0.000 0.481 0.000 0.519 0.395 1.151 0.672
8 0.35 0.65 0.423 0.123 −1.228 −1.878 0.000 0.461 0.000 0.539 0.367 1.074 0.766
9 0.40 0.60 0.360 0.160 −1.303 −1.833 0.000 0.440 0.000 0.560 0.346 1.005 0.846
10 0.45 0.55 0.303 0.203 −1.373 −1.782 0.000 0.420 0.000 0.580 0.331 0.946 0.903
11 0.50 0.50 0.250 0.250 −1.437 −1.725 0.000 0.400 0.000 0.600 0.322 0.899 0.934
12 0.55 0.45 0.203 0.303 −1.494 −1.662 0.000 0.380 0.000 0.620 0.320 0.866 0.932
13 0.60 0.40 0.160 0.360 −1.546 −1.593 0.000 0.360 0.000 0.640 0.325 0.838 0.899
14 0.65 0.35 0.123 0.423 −1.591 −1.518 0.000 0.339 0.000 0.661 0.336 0.832 0.837
15 0.70 0.30 0.090 0.490 −1.630 −1.436 0.000 0.319 0.000 0.681 0.353 0.864 0.751
16 0.75 0.25 0.063 0.563 −1.664 −1.349 0.000 0.299 0.000 0.701 0.377 0.899 0.647
17 0.80 0.20 0.040 0.640 −1.691 −1.256 0.000 0.279 0.000 0.721 0.408 0.938 0.533
18 0.85 0.15 0.023 0.723 −1.712 −1.157 0.000 0.258 0.000 0.742 0.444 0.982 0.413
19 0.90 0.10 0.010 0.810 −1.727 −1.052 0.000 0.238 0.000 0.762 0.488 1.035 0.290
20 0.95 0.05 0.003 0.903 −1.736 −0.941 0.000 0.218 0.000 0.782 0.537 1.108 0.160
21 1.00 0.00 0.000 1.000 −1.739 −0.824 0.000 0.198 0.000 0.802 0.593 1.210 0.001

Fig. 18. Pareto frontier.
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considering MAE, MSE, RMSE, MASE, RMSPE, MAPE, sMAPE, U1, U2,
MdAE, MdAPE and sMdAPE performance metrics (Table 12). In addi-
tion, FA-NBI also presented the lowest VAR and SD of the forecast er-
rors than WM and ARIMA(1,1,1), but larger than DES and ARIMA(2,2,3).
As can be seen in Fig. 20, the decrease of SD and VAR precision metrics
would only be possible with the increase of MSE, RMSE, RMSPE, U1
and U2 performance metrics. That is, to improve the precision one has
to sacrifice performance and vice versa.
The performance and precision of FA-NBI combination method were

compared with those of other weighting methods - AVG, RB, BG/D with
COV and BG/D without COV. Considering RB, the weights were esti-
mated by linear regression and constrained to sum 1, without taking

into account the constant term (Eq. (20)). In order to calculate the
weights using BG/D with COV in Eq. (18) was used a complete matrix Σ
containing the error variances of each of the four methods on the main
diagonal and the covariance between the errors of these methods in the
other terms. Differently, to calculate the weights using BG/D without
COV, only the variances were considered in main diagonal matrix Σ,
being the covariance between the errors series equal to zero. The
weights for AVG, RB, BG/D with COV and BG/D without COV are in the
Table 13. Table 12 indicates that FA-NBI presented better performance
than all other weighting methods with respect to MAE, MSE, RMSE,
MASE, RMSPE, MAPE, sMAPE, U1 and U2 mean metrics, but larger
MdAE, MdAPE and sMdAPE median metrics than BG/D without COV.

Fig. 19. Relationship between the weights ofˆFS1 (W) andˆFS2 (W) in NBI process and the weights' combination methods.

Fig. 20. Overlaid contour plot of FS1 and FS2.
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In terms of precision, FA-NBI presented higher SD and VAR than AVG,
RB and BG/D without COV.
The DM tests results in Table 14, based on the absolute and squared-

error loss, indicated that there is significant statistic difference in re-
lation to the prediction performance (accuracy) between the proposed
method FA-NBI and DES, WM, ARIMA(1,1,1), ARIMA (2,2,3), AVG, RB and
BG/D with and without COV compared methods. Since DM statistics
values for the comparisons between FA-NBI with individual and
weighting methods were greater than Z-value, the DM tests' H0 hy-
pothesis (both forecasts have the same accuracy) were rejected at the
5% level of significance (presenting all P-values < 0.05). Thus, the
alternative hypotheses were accepted, proving that the forecasts do not
have the same accuracy.
In order to test the FA-NBI's applicability and feasibility in relation

to other series of different coffee consumption series' characteristics
(Fig. 5), which has a positive upward trend but without seasonality, two
tests were performed, one making use of real series with trend and

variability, and another with simulated series. In consequence it was
examined the capability of FA-NBI for other linear time series using
both simulated and real data, proving that FA-NBI is quite competent in
modeling and forecasting linear time series in a variety of situations.
Each combination using FA-NBI was composed of three time-series
methods chosen using the MINITAB software package. The 25 sets of
weights to make the residues' combinations came out of a simplex-

Fig. 21. Variations between metrics values in each optimal solution of the Pareto frontier.

Table 12
Comparison between individual and other weighting methods with FA-NBI in coffee's consumption out-of-sample analysis.

FA-NBI DES WM ARIMA (1,1,1) ARIMA (2,2,3) AVG RB BG/D BG/D

with COV without COV

MAE 482.60 731.10 568.33 1737.98 577.32 741.08 537.63 1237.15 761.60
MSE 319,959 680,278 392,122 3,631,493 478,496 674,916 427,733 3,270,028 706,442
RMSE 565.65 824.79 626.20 1905.65 691.73 821.53 654.01 1808.32 840.50
MASE 1.000 1.515 1.178 3.602 1.196 1.536 1.114 2.564 1.578
RMSPE 2.934 4.239 3.089 9.324 3.583 4.188 3.385 8.592 4.280
MAPE 2.516 3.775 2.861 8.675 3.008 3.802 2.801 5.973 3.904
sMAPE 0.026 0.039 0.028 0.091 0.031 0.039 0.029 0.056 0.040
U1 0.015 0.022 0.016 0.051 0.018 0.022 0.017 0.045 0.022
U2 0.029 0.042 0.032 0.098 0.036 0.042 0.034 0.093 0.043
VAR 244,064 159,027 423,103 666,473 179,119 137,152 180,540 2,200,563 137,904
SD 494.0 398.8 650.5 816.4 423.2 370.3 424.9 1483.4 371.4
MdMAE 479.0 677.7 555.8 1949.4 521.0 656.8 474.5 377.7 674.4
MdAPE 2.522 3.482 2.785 9.605 2.835 3.478 2.585 1.999 3.569
sMdAPE 0.025 0.035 0.028 0.101 0.029 0.035 0.026 0.020 0.036

Table 13
Weights' set for weighting methods for consumption.

Weighted Methods DES WM ARIMA(1,1,1) ARIMA(2,2,3)

FA-NBI 0.0000 0.4000 0.0000 0.6000
AVG 0.2500 0.2500 0.2500 0.2500
RB 0.0000 0.0000 0.0000 1.0026
BG/D with COV 0.5832 0.6808 −1.1493 0.8853
BG/D without COV 0.2491 0.2058 0.2441 0.3010
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lattice {3.5}. The rest of the procedures were identical to find the
combination to predict the demand for coffee.
In the first test based on real series, the actual values of the coffee's

Brazilian production from 1965/66 to 2006/07 (Real production in
Fig. 22), made available by ICO (2018), were used to forecast pro-
duction for 2007/08 to 2017/18 periods using FA-NBI. The coffee's
production series data present trend and variability with one year in-
creasing and other decreasing. The other real series used was the cof-
fee's Brazilian exportation from 1965/66 to 2002/03 (Real exportation
in Fig. 23), also available from ICO (2018), to forecast from 2003/04 to
2017/18 periods. The exportation series follows the production series
in positive trend and variability. In this cases, the three individual
methods selected in the MINITAB package to be combined are in
Table 15.
Table 16 brings the weights' set for FA-NBI combination and for

other weighting methods for production and exportation series.
Figs. 22 and 23 display the forecasts of these three methods and FA-

NBI compared to the actual values. Table 17 compares the FA-NBI's
performance and precision with the individual forecasting methods and
with weighting methods in out-of-sample analysis, concerning pro-
duction and exportation series. All the complete numerical compar-
ison's Tables are in supplementary materials.
In Tables 12 and 17, it was observed that FA-NBI presented accep-

table results in terms of performance and precision when applied in
series with trend and variability (non-stationary time series). It should
be noticed that Table 2 shows the main metrics used in the literature to
make comparisons between forecasting methods. It can be observed
that the most used metrics are MAE, MSE, RMSE, MAPE, sMAPE and
MASE. Considering these six metrics, FA-NBI, in Table 16, overcomes
all the individual methods used to combine and all the methods to find
weights' combinations. Fig. 24 demonstrates a tendency for Brazilian
coffee's production to increase more than domestic and external coffee's
demand based on FA-NBI forecasts.
In the second applicability and viability test, Figs. 25–30 show a

collection of linear time series implemented and simulated to test FA-
NBI method in this present study. In each case, the errors ɛt: N (0,1) are
assumed to be random variables independent and identically dis-
tributed (IID). These six time series were chosen to represent a variety
of problems that have time series with different characteristics. The
time series in Figs. 25–28, taken from Montgomery et al. (2008), have

Table 14
DM tests between FA-NBI and individual and weighting methods.

Methods Absolute error Squared error

Statistic P-Value Statistic P-Value

DES −6.1980 0.0001 −3.8738 0.0026
WM −5.8796 0.0001 −3.7761 0.0031
ARIMA(1,1,1) −4.6606 0.0007 −3.0154 0.0118
ARIMA(2,2,3) −5.8796 0.0001 −3.7761 0.0031
AVG −4.8867 0.0005 −3.1261 0.0096
RB −5.1569 0.0003 −3.4380 0.0055
BG/D with COV −4.4876 0.0009 −2.9317 0.0136
BG/D without COV −4.9470 0.0004 −3.1615 0.0091

Fig. 22. Real production series and forecasts.

Fig. 23. Real exportation series and forecasts.

Table 15
The three individual selected forecasting methods for production and exportation series.

Series Selected Individual methods

Production QTM* with fitted trend equation of
= +Y t t( 23885 411 19.51 )t 2

DES (α and β of 0.291522 and
0.106042 respectively).

WM (α, β and γ of 0.31, 0.31 and 0.23 respectively, with
length of seasonality 2).

Exportation ARMA(1,1) DES (α and β of 0.432264 and
0.092629 respectively).

LTM** with fitted linear trend equation of
= +Y t( 11616 287 )t

QTM*: Quadratic Trend Model.
LTM**: Linear Trend Model.

Table 16
Weights' set for weighting methods for coffee's production and exportation
series.

Methods Production Exportation

Weighted/
Individual

QTM DES WM ARMA (1,1) DES LTM

FA-NBI 0.6966 0.0733 0.2301 0.0000 0.4721 0.5279
AVG 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333
RB 1.4451 −0.7261 0.2700 −0.1741 0.0557 1.1084
BG/D with COV 1.4494 −0.7170 0.2675 −0.1526 0.0528 1.0998
BG/D without

COV
0.4225 0.3260 0.2515 0.3369 0.2829 0.3801
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pure autoregressive (AR) or pure moving average (MA) correlation
structures, representing stationary process. The MA series reveal that
the mean and variance remain stable while there are some short runs
where successive observations tend to follow each other for very brief
durations, suggesting that there is indeed some positive autocorrelation

in the data. It can be observed, therefore, some short runs during which
observations tend to move upward or downward. As opposed to the MA
series, however, the duration of these runs tends to be longer and the
trend tends to linger in AR series (Montgomery et al., 2008). FA-NBI
was also tested in time series with mixed AR and MA components -
ARMA (1,1) process in Fig. 29, and with seasonal time series – SARIMA
(1,1,1) (1,1,1)12 process with length of seasonality 12 (Fig. 30), both
equally available in Montgomery et al. (2008).
The three individual selected forecasting methods for each of the six

simulated series are in Table 18.
The FA-NBI combination weights for MA (1), MA (2) and AR (1)

series are in Table 19, and for AR (2), ARMA (1,1) and SARIMA (1,1,1)
(1,1,1)12 in Table 20.
As noticed in Table 21 that FA-NBI also obtained, on average, good

performance and precision in the comparisons. In results' view pre-
sented by FA-NBI in Tables 12, 16 and 21 it has been demonstrated that
it can be applied successfully to find the time series combination's
weights in series with different characteristics.
The complete tables bringing the comparisons of FA-NBI with the

other methods, in view of their application in simulated series, are in
supplementary materials.

Table 17
Comparison between individual and other weighting methods with FA-NBI in coffee's production and exportation out-of-sample analysis.

Series Means' perforfance metrics Median's performance metrics Precisions' metrics

Production Better than all individual and weighting methods. Better than DES and WM. Better than all individual methods, AVG and
BG/D without COV.

Better than all weighting methods. Worse than RB and BG/D with COV.
Worse than QTM.

Exportation Better than all individual and weighting methods, except LTM, RB and
BG/D with COV in RMSPE metric.

Better than all individual methods,
except DES.

Better than all individual methods, except DES.

Better than all weighted methods. Better than all weighted methods.

Mean's performance metrics: MAE, MSE, RMSE, MASE, RMSPE, MAPE, sMAPE, U1 and U2.
Median's performance metrics: MdAE, MdAPE and sMdAPE.
Precision's metrics: SD and VAR.
Weighting's methods: AVG, RB, BD/D with COV and BG/D without COV.

Fig. 24. Real series of coffee's consumption, production and exportation with
respective FA-NBI forecasts.

Fig. 25. Simulated time series describing the first order moving average MA
(1), with equation of ( = + +Y 40 0.8 ).t t t 1

Fig. 26. Simulated time series describing the second-order moving average MA
(2), with equation of = + +Y( 40 0.7 0.28 )t t t t1 2 .
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4. Conclusions

All the steps for the application of FA-NBI combination method were
developed within a case study whose objective was, besides demon-
strating the new method's applicability, to forecast the domestic
Brazilian coffee's consumption. Thus, in the context of time series
methods' combination, PCFA was used to reduce the number of metrics
to be optimized at the same time from 14 to 2. These two metrics - the
FS1 and FS2 factors scores metrics - represented, with minimal loss of
information, the 14 original metrics of performance and precision,
which allowed us to find the weights' combination not only minimizing
one or two metrics, but the 14 metrics at once. Another important point
was to use DOE-M to model the FS1 and FS2 objective functions,

generatingˆFS1 (w) andˆFS2 (w) mathematical objective functions re-
presentative of the 14 original metrics, without the same joint optimi-

zation would not be possible. After,ˆFS1 (w) andˆFS2 (w) were si-
multaneously optimized using the NBI multi-objective optimization

routine, being theˆFS1 (w) andˆFS2 (w) joint optimization in reality
represented the joint optimization of the 14 original metrics re-
presented by them. Thus, each of the 21 Pareto-optimal solutions found
using NBI and, consequently, each of the 21 sets of optimal weights
found represented a point at the Pareto frontier in which it would not
be possible to reduce the value of one of the 14 metrics without causing
the simultaneous increase of, at least, another metric. To find the best
among the 21 sets of optimal weights – the FA-NBI combination, a
highlight of the present study was to use the relation (STotal/GPETotal) in

Fig. 27. Simulated time series describing the first-order autoregressive process
AR (1), with equation of = + +Y Y( 8 0.8 )t t t1 .

Fig. 28. Simulated time series describing the second-order autoregressive
process AR (2) with equation ( = + + +Y Y Y8 0.4 0.5t t t t1 2 ).

Fig. 29. Simulated time series describing mixed autoregressive – moving
average process, ARMA (1,1), with equation = + + +Y Y( 16 0.6 0.8 )t t t t1 1) .

Fig. 30. Simulated time series describing SARIMA (1,1,1) (1,1,1)12 process.
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making decision about the choice of the best solution to forecast coffee's
demand. Based on the out-of-sample analysis in Table 12, FA-NBI pre-
sented better means's performance metrics (MAE, MSE, RMSE, MASE,
RMSPE, MAPE, sMAPE, U1 and U2) and better medians's performance
metrics (MdAPE, MdAPE and sMdAPE) than all the individual methods
chosen to combine - DES, WM, ARIMA(1,1,1) and ARIMA(2,2,3). In com-
parison with the other weighting methods, it obtained better perfor-
mance in means' metrics than all - AVG, RB, BG/D with and without
COV, only being surpassed in medians' metrics by RB and BG/D with
COV. In addition to good performance in numerical terms presented by
FA-NBI, it was proved in Table 14 that these gains were statistically
significant based on the DM performed tests. The DM tests proved that
the FA-NBI exhibited a significant statistic improvement of accuracy
(performance) compared to individual and weighting mentioned
methods. In relation to the precision metrics (SD and VAR of errors),
FA-NBI was better than WM, ARIMA(1,1,1) and BG/D with COV, but it
was surpassed by DES, AVG, RB and BG/D without COV. But it was
demonstrated in the case that, in view of the joint optimization of
multiple objectives (metrics), to achieve more precision it would be
necessary to sacrifice performance.
Another objective of the paper was to test the applicability and

feasibility of FA-NBI in relation to other real and simulated time series
with different characteristics from the coffee demand series. Regarding
the two real series, the coffee production and export were chosen to
make joint analysis with the internal coffee demand. The Fig. 24 ex-
hibited that the trend of coffee production growth is higher than that of
domestic and export consumption, based on the forecasts made by FA-
NBI, pointing to a low possibility of both internal and external market
shortages of coffee. The results presented in Table 16, for coffee pro-
duction and exportation series, and in Table 20 for the six simulated
series showed that FA-NBI, on average, obtained very good results in
terms of performance and precision when compared to individual
methods combined and other weighting methods. As an additional
advantage, FA-NBI adds information from different combined fore-
casting methods, and not just one, allowing the identification of the
underlying process, since these different forecasting models were able
to capture different information's aspects available for prediction. An-
other advantage is that weights of FA-NBI were selected based on 14
objectives, thus making the best use of available information in each of
the 14 metrics. Therefore, the results showed that the approach fol-
lowed in this work can be an effective way to find the weights for a
combination of time series methods.

Table 18
The three individual selected forecasting methods for each of the six simulated series.

Series Selected Individual methods

MA (1) ARIMA(1,1,1) MDEC* with = +Y t( 39.947 0.0145 )t
equation and seasonal length of 2.

ARMA(2,1)

MA (2) WM (α, β and γ of 0.47, 0.16 and 0.14
respectively, with length of seasonality 2).

DES (α and β of 1.02818 and 0.03947
respectively).

ARMA(1,1)

AR (1) WM (α, β and γ of 0.50, 0.05 and 0.18
respectively, with length of seasonality 2).

MDEC with = +Y t( 39.947 0.0145 )t
equation and seasonal length of 2.

ARIMA(1,1,1)

AR (2) MDEC* with = +Y t( 40.126 0.0296 )t equation
and seasonal length of 2.

DES (α and β of 0.689070 and 0.060339
respectively).

WM (α, β and γ of 0.05, 0.008 and 0.04 respectively, with
length of seasonality 2).

ARMA (1,1) WM (α, β and γ of 0.27, 0.20 and 0.20
respectively, with length of seasonality 2).

ARMA(1,1) QTM with = +Y t t( 41.145 0.1523 0.00448 )t 2 equation.

SARIMA (1,1,1)
(1,1,1)12

WM (α, β and γ of 0.35, 0.35 and 0.10
respectively, with length of seasonality 12)

ARIMA(1,1,1) EGTM** with = ×Y 43.2652 (1.00116 )t t equation

MDEC*: Multiplicative Decomposition Model.
EGTM**: Exponential Growth Trend Model.

Table 19
Weights' set for weighting methods in MA (1), MA (2) and AR (1) series.

Weighted Methods MA (1) series MA (2) series AR (1) series

ARIMA MDEC ARMA WM DES ARMA WM MDEC ARIMA

(1,1,1) (2,1) (1,1) (1,1,1)

FA-NBI 0.634 0.366 0.000 0.655 0.021 0.325 0.303 0.121 0.576
AVG 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333
RB −15.064 1.103 14.965 0.492 −0.020 0.532 −0.110 0.051 1.059
BG/D with COV −13.634 1.032 13.602 0.492 −0.023 0.531 −0.119 0.051 1.068
BG/D without COV 0.357 0.285 0.358 0.314 0.348 0.338 0.339 0.184 0.476

Table 20
Weights' set for weighting methods in AR (2), ARMA (1,1) and SARIMA (1,1,1) (1,1,1) series.

Weighted Methods AR (2) series ARMA (1,1) series SARIMA (1,1,1) (1,1,1) series

MDEC DES WM WM ARMA QTM WM ARIMA EGTM

(1,1) (1,1,1)

FA-NBI 0.882 0.118 0.000 0.000 0.836 0.164 0.300 0.700 0.000
AVG 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333
RB 0.833 0.746 −0.592 −0.027 0.969 0.058 0.899 −0.120 0.217
BG/D with COV 0.843 0.746 −0.589 −0.027 0.969 0.058 0.085 0.454 0.461
BG/D without COV 0.281 0.446 0.273 0.165 0.656 0.179 0.075 0.449 0.477
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Appendix A. Forecast time series methods

Time series analysis requires only past values of the variable to be predicted. The pattern observed in the past values is expected to provide
adequate information to predict future values. The forecast obtained by averaging methods takes into account the previous observed values of the
variable that one requires to predict. They are methods that typically generate “adaptive” forecasts that adjust automatically to the most recent data
available. Among the weighted averaging methods, Exponential Smoothing (ES) uses decreasing exponential weights from the more recent ob-
servations towards the older (Makridakis et al., 1998). According to Gaither and Frazier (2001), the Single Exponential Smoothing (SES) smooths the
data by computing exponentially weighted averages and provides short-term forecasts. It takes the forecast for the previous period and adds an
adjustment called smoothing constant or “smoothing” of the level or average (α), for the forecast for the next Ft+1 period. Thus, the forecast equation
for the Ft+1 forward period is given by Ft+1= Ft + α (Yt – Ft), where Yt – Ft is the forecast error of the period prior to one the be predicted. Unlike
SES, the Double Exponential Smoothing (DES) is suitable for use in the presence of trend components and provides short-term forecasts. For this
reason, besides the α parameter (for smoothing the average or level, as in SES), the DES method, also known as Browns' method, also uses the β
parameter for smoothing the series trend (Gaither and Frazier, 2001). Equation (A.1) (for level), (A.2) (for trend) and (A.3) (for the forecast to m
periods ahead) are required to calculate the forecast in DES method (Makridakis et al., 1998), where Lt is an estimate level of the time series in t
period, and bt is the estimate trend of the series in t period.

= +L Y L b(1 )( )t t t t1 1 (A.1)

= +b L L b( ) (1 )t t t t1 1 (A.2)

= ++F L b mt m t t (A.3)

Eq. (A.1) adjusts Lt by trend of the bt-1 previous period, adding the last smoothed Lt-1 value to it. This helps to eliminate the delay and takes Lt to
the approximate level of current data values. Eq. (A.2) updates the tendency that expresses the difference of the last two smoothed values. This is
appropriate because there is a trend in the data, and the new values should be higher or lower than they are. Since there is some remaining
randomness, the tendency is modified by smoothing, using β trend in the (Lt - Lt-1) last period adding to this last trend estimate multiplied by (1-β).
Finally, Eq. (A.3) is used to calculate the forecast for m periods ahead, with the trend (bt) being multiplied by m and added to the Lt base value. The
initialization process requires two estimates, one for the first Y1 smoothed value, and the other for the T1 trend value. Alternatively, one can use
T1= Y1. The α and β weights may be chosen by trial, for example, as the values that together minimize the value of Mean Absolute Deviation (MAD)
(Makridakis et al., 1998).
The Holt-Winters Exponential Smoothing (HW) method is an extension of DES method, and its forecast considers not only the smoothing

constants for the level and trend but also the smoothing constant for seasonality (Newbold, 1994). The HW method, therefore, is based on three
exponential smoothing equations: one to smooth the level, another one to smooth the trend, and the last one to smooth the seasonality. Therefore,
besides the α parameter (for smoothing the average or level) and the β parameter (for smoothing to the trend), there is the γ parameter to smoothing
the seasonality of the series. There are two different HW methods, depending whether seasonality is modeled multiplicatively or additively: The

Table 21
Comparison between individual and other weighting methods with FA-NBI considering simulated series in out-of-sample analysis.

Series Means' perforfance metrics Median's performance metrics Precisions' metrics

MA (1) Better than all individual and weighting methods, being
surpassed in MAPE only by RB and BG/D without COV.

Better than MDEC, AVG, RB and BG/D
with and without COV.

Better than MDEC.

Worse than ARIMA(1,1,1) and ARMA(2,1). Worse than ARIMA(1,1,1), ARMA(2,1) and all
methods to find weights' combination.

MA (2) Better than all individual methods. Better than all individual and weighted
methods.

Better than ARIMA(1,1,1), RB and BG/D with
COV.

Worse than AVG, RB and BG/D with and without COV in
MSE, RMSE, MAPE and sMAPE.

Worse than WM, MDEC, AVG and BG/D without
COV.

AR (1) Better than all individual and weighting methods. Better than WM, ARIMA(1,1,1), RB and
BG/D with COV.

Better than WM, MDEC, AVG and BG/D without
COV.

Worse than MDEC, AVG and BG/D
without COV.

Worse than ARIMA(1,1,1), RB and BG/D with
COV.

AR (2) Better than all individual methods. Better than MDEC and WM. Better than all individual methods, with MDEC
exception.

Better than RB and BG/D with COV in MSE, RMSE and
RMSPE, and worse in the others.

Worse than DES. Better than all weighting methods

Worse than AVG and BG/D with COV on all metrics. Worse than all weighting methods.
ARMA (1,1) Better than WM, QTM, AVG and BG/D without COV. Better than all individual and weighting

methods.
Better than QTM, RB and BG/D with COV.

Better than ARMA(1,1), RB and BG/D with COV in MAE,
MASE, MAPE and sMAPE.

Worse than WM, ARMA(1,1), RB and BG/D with
COV.

Worse than ARMA(1,1), RB and BG/D with COV in MSE,
RMSE, U1 and U2.

SARIMA (1,1,1)
(1,1,1)12

Better than all individual methods and BG/D with and
without COV.

Better than WM, EGTM and RB. Better than WM, EGTM, AVG and BG/D with
and without COV.

Worse than AVG only in MAE, MASE, RMSPE and MAPE. Worse than ARIMA(1,1,1), AVG and BG/
D with and without COV.

Worse than ARIMA(1,1,1) and RB.

Worse than RB just in sMAPE.
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Holt-Winter's multiplicative (WM) and the Holt-Winter's additive (WA). WM is based in Equation (A.4) (for level), (A.5) (for trend), (A.6) (for
seasonality), and (A.7) (forecast for m periods ahead), where s is the size of seasonality (Makridakis et al., 1998):

= + +L Y
S

L b(1 )( )t
t

t s
t t1 1

(A.4)

= +b L L b( ) (1 )t t t t1 1 (A.5)

= +S Y
L

S(1 )t
t

t
t s

(A.6)

= ++ +F L b m S( )t m t t t s m (A.7)

Equation (A.4) differs from Eq. (A.1) due to its first term being divided by the (St-s) seasonal number to deseasonalize the Yt series. Eq. (A.5) is the
same as Eq. (A.2) of trend smoothing in DES. Eq. (A.6) is compared to a seasonal index because Yt, which contains seasonality, is divided by current
smoothed value of the series, where the division value may be higher or lower than 1 depending on the magnitude of Yt. As Yt also contains
randomness, the Eq. (A.6) weights the newly computed seasonal factor with γ and the most recent seasonal number corresponding to the same season
with 1-γ (Makridakis et al., 1998).
Autoregressive Integrated Moving Average (ARIMA) models were popularized by George Box and Gwilym Jenkins in the early 1970s. To carry

out predictions from these models, it is important to know if the stochastic process, which generated the data set, varies or not in relation to time, i.e.,
if the process is stationary or not. In the case of linear stationary processes – where the data fluctuate around a constant mean, independent of time,
and the variance of the fluctuation remains constant over time – the models used to represent them are the autoregressive models of order (p), AR (p);
the moving average models of order (q), MA (q); and autoregressive models of order (p) coupled with the moving averages models of order (q),
ARMA (p, q). In the event of non-stationary data series regarding the level and/or slope, the generating process of this series will be a linear
homogeneous non-stationary process. In this case, to make the process stationary it will be necessary to promote d differentiations of this series.
These processes will be represented by autoregressive integrated moving average models of order p, d and q (ARIMA (p, d, q)). After the time series
are differentiated (d) times to make it stationary, the ARIMA (p, d, q) model can be represented by Eq. (A.8), that is, by the linear function of last
known observed values of the variable being predicted and last prediction errors of an ARMA model:

= + + … + + …Y Y Y Y, , , ,t t t p t p t t t q t q1 1 2 2 1 1 2 2 (A.8)

where Yt is the forecast value in t period; εt is the random error at t period, that is, a random variable normally distributed, with a mean of zero,
constant variance and covariance with value zero; φi (i=1, 2, 3, …, p) are the autoregressive parameters, i (j=1, 2, 3 …, q) are the moving
average parameters, and p and q are integers referred to as orders of the model.
Regarding the ARIMA model, the random process that generates Yt series will be described by a weighted average of p past observations of the

variable to be predicted, added to random disturbance in the current period (εt) coupled with a weighted average of the error series (random
disturbances) that returns to q periods.

Appendix B. Statistical error measures

Metrics and equations Definitions
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Standard deviation of errors (B.14)

Where rw is the random walk method; yt is the value observed in period t; ŷt is the predict value in the period t; (et = yt - ŷt) is the error from the model-
fitting process in period t; n is the number of observations; and ēt is the arithmetic mean of the errors series (e).

Appendix C. Experimental Designs of FS1 and FS2

Table C.1
Experimental Design of FS1 and FS2.

Weights Factors Scores Weights Factors Scores

c DES WM ARIMA ARIMA FS1 FS2 c DES WM ARIMA ARIMA FS1 FS2

(1,1,1) (2,2,3) (1,1,1) (2,2,3)

1 1.000 0.000 0.000 0.000 0.954 2.215 32 0.200 0.000 0.600 0.200 −0.175 0.778
2 0.800 0.200 0.000 0.000 0.536 1.009 33 0.200 0.000 0.400 0.400 −0.801 0.469
3 0.800 0.000 0.200 0.000 0.808 1.186 34 0.200 0.000 0.200 0.600 −1.133 0.884
4 0.800 0.000 0.000 0.200 0.259 1.878 35 0.200 0.000 0.000 0.800 −1.166 0.969
5 0.600 0.400 0.000 0.000 0.569 0.325 36 0.000 1.000 0.000 0.000 2.941 −0.523
6 0.600 0.200 0.200 0.000 0.537 0.431 37 0.000 0.800 0.200 0.000 2.180 −0.724
7 0.600 0.200 0.000 0.200 −0.271 0.154 38 0.000 0.800 0.000 0.200 0.974 −0.949
8 0.600 0.000 0.400 0.000 0.723 0.910 39 0.000 0.600 0.400 0.000 1.646 −1.449
9 0.600 0.000 0.200 0.200 0.007 0.946 40 0.000 0.600 0.200 0.200 0.532 −1.704
10 0.600 0.000 0.000 0.400 −0.287 1.251 41 0.000 0.600 0.000 0.400 −0.478 −1.854
11 0.400 0.600 0.000 0.000 0.964 −0.495 42 0.000 0.400 0.600 0.000 1.168 −0.361
12 0.400 0.400 0.200 0.000 0.687 −0.034 43 0.000 0.400 0.400 0.200 0.105 −0.987
13 0.400 0.400 0.000 0.200 −0.241 −0.473 44 0.000 0.400 0.200 0.400 −0.812 −1.444
14 0.400 0.200 0.400 0.000 0.565 0.887 45 0.000 0.400 0.000 0.600 −1.464 −2.424
15 0.400 0.200 0.200 0.200 −0.314 0.353 46 0.000 0.200 0.800 0.000 0.833 0.407
16 0.400 0.200 0.000 0.400 −0.933 −0.078 47 0.000 0.200 0.600 0.200 −0.125 −0.012
17 0.400 0.000 0.600 0.000 0.671 0.989 48 0.000 0.200 0.400 0.400 −0.922 −0.851
18 0.400 0.000 0.400 0.200 −0.128 0.663 49 0.000 0.200 0.200 0.600 −1.531 −1.031
19 0.400 0.000 0.200 0.400 −0.619 1.120 50 0.000 0.200 0.000 0.800 −1.790 −0.532
20 0.400 0.000 0.000 0.600 −0.782 1.200 51 0.000 0.000 1.000 0.000 0.762 0.903
21 0.200 0.800 0.000 0.000 1.744 −1.441 52 0.000 0.000 0.800 0.200 −0.148 0.681
22 0.200 0.600 0.200 0.000 1.271 −1.080 53 0.000 0.000 0.600 0.400 −0.859 −0.005
23 0.200 0.600 0.000 0.200 0.191 −1.264 54 0.000 0.000 0.400 0.600 −1.313 −0.003
24 0.200 0.400 0.400 0.000 0.854 0.092 55 0.000 0.000 0.200 0.800 −1.486 0.117
25 0.200 0.400 0.200 0.200 −0.099 −1.020 56 0.000 0.000 0.000 1.000 −1.416 0.531
26 0.200 0.400 0.000 0.400 −0.933 −1.439 57 0.250 0.250 0.250 0.250 −0.452 −0.301
27 0.200 0.200 0.600 0.000 0.672 0.490 58 0.625 0.125 0.125 0.125 0.090 0.485
28 0.200 0.200 0.400 0.200 −0.261 0.369 59 0.125 0.625 0.125 0.125 0.773 −1.825
29 0.200 0.200 0.200 0.400 −0.979 −0.445 60 0.125 0.125 0.625 0.125 0.082 0.826
30 0.200 0.200 0.000 0.600 −1.425 −0.186 61 0.125 0.125 0.125 0.625 −1.433 0.170
31 0.200 0.000 0.800 0.000 0.675 1.244

Appendix D. The DM test

For one-step ahead forecasts, the DM test is computed considering the errors series of the two comparison models – (e1) and (e2) series. First, it is
calculated the loss differential series (dt) as Eq. (D.1), such as MAE error statistic, or as Eq. (D.2), such as MSE error statistic, for all t observations of
e1 and e2, with t=1,2, … n.

=d L e L e( ) ( )t t t1, 2, (D.1)

=d L e L e( ) ( )t t t1,
2

2,
2 (D.2)

In Equations (D.1) and (D.2), L is the loss function of the prediction error, which is used to measure the forecasting accuracy of different models.
The DM test compares the accuracy of two forecasts under the null hypothesis (H0) which assumes that there is no significant difference about the
prediction performance between the proposed model 1 and the compared model 2, i.e. all relevant information contained in 1 are also contained in
2. Thus, Ho is accept if E [L (e1,t)]= E [L (e2,t], and H0 is rejected if E [L (e1,t)] E [L (e2,t].
Assuming that dt has stationary covariance and DM test has an asymptotic standard normal distribution under the null hypothesis of equal

predictive accuracy, in a second step it is calculated the mean value (d̄) of the dt series as (d̄ = = dn t
n

t
1

1 ). The DM test is calculated as Eq. (D.3),
where V̂ (d̄) is a consistent estimate of the asymptotic variance of d̄ calculated as Eq. (D.4):

=DM d
V d

¯
ˆ ( ¯) (D.3)

+
=

V d
n

ˆ ( ¯) 1 2
i

i0
1

1

(D.4)

where γi is the i-th autocovariance of d, estimated by Eq. (D.5) and is still assumed that τ-step-ahead forecasts exhibit dependence up to order τ −1
(Kisinbay, 2010).
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The null hypothesis will be rejected if >DM Z 2, i.e. if P-value> 0.05 where Z 2 is the critical (z – value) of the standard normal distribution,
and α is the significance level (Xu et al., 2017; Du et al., 2017).

Appendix E. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijpe.2019.03.001.

References

Adhikari, R., Agrawal, R.K., 2014. Performance evaluation of weights selection schemes
for linear combination of multiple forecasts. Artif. Intell. Ver. 42, 529–548.

Ahlburg, D.A., 1992. A commentary on error measures. Int. J. Forecast. 8, 99–111.
Ahmadi, A., Kaymanesh, A., Siano, P., Janghorbani, M., Nezhad, A.E., Sarno, D., 2015.

Evaluating the effectiveness of normal boundary intersection method for short-term
environmental/economic hydrothermal self-scheduling. Electr. Power Syst. Res. 123,
192–204.

Andrawis, R.R., Atiya, A.F., El-Shishiny, H., 2011. Combination of long term and short-
term forecasts, with application to tourism demand forecasting. Int. J. Forecast. 27,
870–886.

Armstrong, J.S., Collopy, F., 1992. Error measures for generalizing about forecasting
methods: empirical comparisons. Int. J. Forecast. 8, 69–80.

Barrow, D.K., Crone, S.F., 2016. Cross-validation aggregation for combining auto-
regressive neural network forecasts. Int. J. Forecast. 32, 1120–1137.

Barrow, D.K., Kourentzes, N., 2016. Distributions of forecasting errors of forecast com-
binations: implications for inventory management. Int. J. Prod. Econ. 177, 24–33.

Bates, J.M., Granger, C.W.J., 1969. The combination of forecasts. Oper. Res. Soc. 20,
451–468.

Bjørnland, H.C., Gerdrup, K., Jore, A.S., Smith, C., Thorsrud, L.A., 2012. Does forecast
combination improve norges bank inflation forecasts? Oxf. Bull. Econ. Stat. 74 (2).
https://doi.org/10.1111/j.1468-0084.2011.00639. 0305-9049.

Bordignon, S., Bunn, D.W., Lisi, F., Nan, F., 2013. Combining day-ahead forecasts for
British electricity prices. Energy Econ. 35, 88–103.

Brito, T.G., Paiva, A.P., Ferreira, J.R., Gomes, J.H.F., Balestrassi, P.P., 2014. A normal
boundary intersection approach to multiresponse robust optimization of the surface
roughness in end milling process with combined arrays. Precis. Eng. 38, 628–638.

Bunn, D.W., 1975. A bayesian approach to the linear combination of forecasts. Oper. Res.
Q. 26 (2), 325–329 part 1.

Cang, S., Yu, H., 2014. A combination selection algorithm on forecasting. Eur. J. Oper.
Res. 234, 127–138.

Chan, C.K., Kingsman, B.G., Wong, H., 1999. The value of combining forecasts in in-
ventory management - a case study in banking. Eur. J. Oper. Res. 117, 199–210.

Clemen, R.T., 1989. Combining forecasts: a review and annotated. Int. J. Forecast. 5,
559–583.

Cornell, J.A., 2002. Experiments with Mixtures: Designs, Models and the Analysis of the
Mixture Data, 3th. ed. John Wiley & Sons, New York.

Cornell, J.A., 2011. A Primer on Experiments with Mixtures, tenth ed. John Wiley & Sons,
New Jersey.

Coronado, M., Segadães, A.M., Andrés, A., 2014. Combining mixture design of experi-
ments with phase diagrams in the evaluation of structural ceramics containing
foundry by-products. Appl. Clay Sci. 101, 390–400.

Crone, S.F., Hibon, M., Nikolopoulos, K., 2011. Advances in forecasting with neural
networks? Empirical evidence from the NN3 competition on time series prediction.
Int. J. Forecast. 27, 635–660.

Das, I., Dennis, J.E., 1998. Normal-boundary intersection: a new method for generating
the Pareto surface in nonlinear multicriteria optimization problems. Soc. Ind. Appl.
Math. 8, 631–657.

Dekker, M., Donselaar, K.V.D., Ouwehand, P., 2004. How to use aggregation and com-
bined forecasting to improve seasonal demand forecasts. Int. J. Prod. Econ. 90,
151–167.

Deutsch, M., Granger, C.W.J., Terasvirta, T., 1994. The combination of forecasts using
changing weights. Int. J. Forecast. 10, 47–57.

Dickinson, J.P., 1973. Some statistical results in the combination of forecasts. Oper. Res.
Q. 24 (2), 253–260.

Diebold, F.X., Mariano, R.S., 1995. Comparing predictive accuracy. J. Bus. Econ. Stat. 13
(3), 253–263.

Diebold, F.X., Pauly, P., 1990. The use of prior information in forecast combination. Int. J.
Forecast. 6, 503–508.

Dixon, W.J., 1950. Analysis of extreme values. Ann. Math. Stat. 21 (4), 488–506.
Du, P., Wang, J., Guo, Z., Yang, W., 2017. Research and application of a novel hybrid

forecasting system based on multi-objective optimization for wind speed forecasting.
Energy Convers. Manag. 150, 90–107.

Du, P., Wang, J., Yang, W., Niu, T., 2018. Multi-step ahead forecasting in electrical power
system using a hybrid forecasting system. Renew. Energy 122, 533–550.

Fang, Y., 2003. Forecasting combination and encompassing tests. Int. J. Forecast. 19,
87–94.

Faria, A.E., Mubwandarikwa, E., 2008. The geometric combination of Bayesian fore-
casting models. J. Forecast. 27, 519–535.

Fildes, R., Fotios, P., 2015. Simple versus complex selection rules for forecasting many

time series. J. Bus. Res. 68, 1692–1701.
Gaither, N., Frazier, G., 2001. Operations Management. South-Western, Ohio.
Ganesan, T., Vasant, P., Elamvazuthi, I., 2013. Normal-boundary intersection based

parametric multi-objective optimization of green sand mould system. J. Manuf. Syst.
32, 197–205.

Graefe, A., Armstrong, J.S., Jones, J.R., Randall, J., Cuzán, A.G., 2014. Combining fore-
casts: an application to elections. Int. J. Forecast. 30, 43–54.

Granger, C.W.J., Ramanathan, R., 1984. Improved methods of combining forecasts. J.
Forecast. 3, 197–204.

Gulledge, J.R., Thomas, R., Ringuest, J.L., Richardson, J.A., 1986. Subjective evaluation
of composite econometric policy inputs. Soc. Econ. Plann. Sci. 20, 51–55.

Hair Jr., J.F., Black, W.C., Babin, B.J., Anderson, R.E., 2010. Multivariate Data Analysis, 7
th ed. Prentice Hall, New York.

Hayton, J.C., Allen, D.G., Vida, S., 2004. Factor retention decisions in exploratory factor
analysis: a tutorial on parallel analysis. Organ. Res. Methods 7, 191–205.

Hibon, M., Evgeniou, T., 2005. To Combine or not to Combine: selecting among forecasts
and their combinations. Int. J. Forecast. 21, 15–24.

Hyndman, R.J., Koehler, A.B., 2006. Another look at measures of forecast accuracy. Int. J.
Forecast. 22, 679–688.

International Cofee Organization (ICO). . http://www.ico.org, Accessed date: 23 June
2018.

Jia, Z., Ierapetritou, M.G., 2007. Generate Pareto optimal solutions of scheduling pro-
blems using normal boundary intersection technique. Comput. Chem. Eng. 31,
268–280.

Johnson, R.A., Wichern, D.W., 2007. Applied Multivariate Statistical Analysis, sixth ed.
Pearson, New York.

Jolliffe, L.T., 2002. Principal Component Analysis, 2th ed. Springer series in statistics,
New York.

Jose, V.R.R., Winkler, R.L., 2008. Simple robust averages of forecasts: some empirical
results. Int. J. Forecast. 24, 163–169.

Kaiser, H.F., 1960. The application of electronic computers to factor analysis. Educ.
Psychol. Meas. 20, 141–151.

Kang, H., 1986. Unstable in the combination of forecasts. Manag. Sci. 32, 683–695.
Kisinbay, T., 2010. The USE of encompassing tests for forecast combinations. J. Forecast.

29, 715–727.
Lam, K.F., Mui, H.W., Yuen, H.K., 2001. A note on minimizing absolute percentage error

in combined forecasts. Comput. Oper. Res. 28, 1141–1147.
Lesage, J.P., Magura, M., 1992. A mixture-model approach to combining forecasts. J. Bus.

Econ. Stat. 10, 445–452.
Leung, M.T., Daouk, H., Che, A.-S., 2001. Using investment portfolio return to combine

forecasts: a multiobjective approach. Eur. J. Oper. Res. 134, 84–102.
Lopes, L.G.D., Brito, T.G., Paiva, A.P., Peruchi, R.S., Balestrassi, P.P., 2016. Robust

parameter optimization based on multivariate normal boundary intersection.
Comput. Ind. Eng. 93, 55–66.

Mahmoud, E., 1989. Combining forecasts: some managerial issues. Int. J. Forecast. 5,
599–600.

Makridakis, S., 1990. Sliding simulation: a new approach to time series forecasting.
Manag. Sci. 36, 505–512.

Makridakis, S., 1993. Accuracy measures: theoretic and practical concerns. Int. J.
Forecast. 9, 527–529.

Makridakis, S., Winkler, R.L., 1983. Averages of forecasts: some empirical results. Manag.
Sci. 29, 987–996.

Makridakis, S., Wheelwrigt, S.C., Hyndman, R.J., 1998. Forecasting: Methods and
Applications, 3th ed. John Wiley & Sons, New York.

Martínez-Rivera, B., Ventosa-Santaulària, D., Vera-Valdés, J.E., 2012. Spurious forecasts?
J. Forecast. 31, 245–259.

Martins, V.L.M., Werner, L., 2012. Forecast Combination in Industrial Series: a compar-
ison between individual forecasts and its combinations with and without correlated
errors. Expert Syst. Appl. 39, 11479–11486.

Meade, N., 2002. A comparison of the accuracy of short term foreign Exchange fore-
casting methods. Int. J. Forecast. 18, 67–83.

Montgomery, D.C., Jennings, C.L., Kulahci, M., 2008. Introduction to Times Series
Analysis and Forecasting. John Wiley & Sons, New York.

Moreno, B., López, A.J., 2013. Combining economic forecasts by using a maximum
Entropy econometric approach. J. Forecast. 32, 124–136.

Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M., 2009. Response Surface
Methodology: Process and Product Optimization Using Design Experiments, 3th. ed.
John Wiley & Sons, New York.

Newbold, P., 1994. Statistics for Business & Economics. Prentice Hall. Inc, New Jersey.
Newbold, P., Granger, C.W.J., 1974. Experience with forecasting univariate time series

and the combination of forecasts. J. R. Stat. Soc. 137, 131–165.
Oliveira, F.A., Paiva, A. P. de, Lima, J.W.M., Balestrassi, P.P., Mendes, R.R.A., 2011.

L.A. Bacci, et al. International Journal of Production Economics 212 (2019) 186–211

210

https://doi.org/10.1016/j.ijpe.2019.03.001
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref1
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref1
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref2
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref3
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref3
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref3
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref3
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref4
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref4
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref4
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref5
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref5
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref6
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref6
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref7
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref7
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref8
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref8
https://doi.org/10.1111/j.1468-0084.2011.00639
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref10
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref10
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref11
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref11
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref11
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref12
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref12
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref13
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref13
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref14
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref14
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref15
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref15
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref16
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref16
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref17
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref17
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref18
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref18
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref18
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref19
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref19
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref19
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref20
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref20
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref20
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref21
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref21
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref21
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref22
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref22
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref23
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref23
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref24
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref24
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref25
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref25
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref26
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref27
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref27
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref27
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref28
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref28
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref29
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref29
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref30
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref30
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref31
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref31
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref32
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref33
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref33
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref33
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref34
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref34
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref35
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref35
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref36
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref36
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref37
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref37
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref38
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref38
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref39
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref39
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref40
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref40
http://www.ico.org
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref42
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref42
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref42
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref43
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref43
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref44
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref44
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref45
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref45
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref46
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref46
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref47
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref48
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref48
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref49
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref49
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref50
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref50
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref51
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref51
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref52
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref52
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref52
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref53
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref53
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref54
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref54
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref55
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref55
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref56
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref56
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref57
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref57
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref58
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref58
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref59
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref59
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref59
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref60
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref60
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref61
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref61
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref62
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref62
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref63
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref63
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref63
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref64
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref65
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref65
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref66


Portfolio optimization using Mixture Design of Experiments: scheduling trades within
electricity markets. Energy Econ. 33, 24–32.

Osborn, J.W., 2015. What is rotation in exploratory factor analysis? Practical Assess. Res.
Eval. 20, 1–7.

Petropoulos, F., Makridakis, S., Assimakopoulos, V., Nikolopoulos, K., 2014. ‘Horses for
Courses’ in demand forecasting. Eur. J. Oper. Res. 237, 152–163.

Reeves, G.R., Lawrence, K.D., 1991. Combining forecasts given different types of objec-
tives. Eur. J. Oper. Res. 51, 65–72.

Reeves, G.R., Lawrence, K.D., Lawrence, 1982. Combining multiple forecasts given
multiple objectives. J. Forecast. 1, 271–279.

Reeves, G.R., Lawrence, K.D., Lawrence, S.M., Guerard, J.B., 1988. Combining earnings
forecasts using multiple objective linear programming. Comput. Oper. Res. 15,
551–559.

Rocha, L.C.S., Paiva, P.P., Balestrassi, P.P., Severino, G., Rotela Junior, P., 2015. Entropy-
based weighting for multiobjective optimization: as application on vertical turning.
Math. Probl Eng. 2015, 1–11.

Sankaran, S., 1989. A comparative evaluation of methods for combining forecasts. Akron
Bus. Econ. Rev. 20, 33–39.

Shannon, C.E., 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27
(379–423), 623–656.

Shukla, P.K., Deb, K., 2007. On finding multiple Pareto-optimal solutions using classical
evolutionary generating methods. Eur. J. Oper. Res. 181, 1630–1652.

Simionescu, M., 2013. The performance of unemployment rate predictions in Romania.
Strategies to improve the forecasts accuracy. Rev. Econ. Persp. Národohospodárský
obzor 13 (4), 161–175. https://doi.org/10.2478/revecp-2013-0007.

Tselentis, D.I., Vlahogianni, E.I., Karlaftis, M.G., 2015. Improving short-term traffic
forecasts: to combine models or not to combine? IET Intell. Transp. Syst. 9 (2),
193–201. https://doi.org/10.1049/iet-its.2013.0191.

Tseng, F.-M., Yu, H.-C., Tzeng, G.-H., 2002. Combining neural network model with

seasonal time series ARIMA model. Technol. Forecast. Soc. Change 69, 71–87.
Ustun, O., Kasimbeyli, R., 2012. Combined forecasts in portfolio optimization: a gen-

eralized approach. Comput. Oper. Res. 39, 805–819.
Utyuzhnikov, S.V., Fantini, P., Guenov, M.D., 2009. A method for generating a well-

distributed Pareto set in nonlinear multiobjective optimization. J. Comput. Appl.
Math. 223, 820–884.

Vahidinasab, V., Jadid, S., 2010. Normal boundary intersection method for suppliers'
strategic bidding in electricity markets: an environmental/economic approach.
Energy Convers. Manag. 51, 1111–1119.

Wallstrom, P., Segerstedt, A., 2010. Evaluation of forecasting error measurements and
techniques for intermittent demand. Int. J. Prod. Econ. 128, 625–636.

Wang, J., Du, P., Niu, T., Yang, W., 2017. A novel hybrid system based on a new proposed
algorithm – multi-Objective Algorithm for wind speed forecasting. Appl. Energy 208,
344–360.

Wang, J., Yang, W., Du, P., Niu, T., 2018. A novel hybrid forecasting system of wind speed
based on a newly developed multi-objective sine cosine algorithm. Energy Convers.
Manag. 163, 134–150.

Weatherford, L.R., Kimes, S.E., 2003. A comparison of forecasting methods for hotel
revenue management. Int. J. Forecast. 19, 401–415.

Winkler, R.L., 1989. Combining Forecasts: a philosophical basis and some current issues.
Int. J. Forecast. 5, 605–609.

Winkler, R.L., Makridakis, S., 1983. The combination of forecast. J. R. Stat. Soc. 146,
150–157.

Xu, Y., Yang, W., Wang, J., Yang, 2017. Air quality early-warming system for cities in
China. Atmos. Environ. 148, 239–257.

Zhao, W., Wang, J., Lu, H., 2014. Combining forecasts of electricity consumption in China
with time-varying weights updated by a high-order Markov chain model. Omega 45,
80–91.

L.A. Bacci, et al. International Journal of Production Economics 212 (2019) 186–211

211

http://refhub.elsevier.com/S0925-5273(19)30087-8/sref66
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref66
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref67
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref67
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref68
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref68
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref69
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref69
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref70
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref70
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref71
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref71
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref71
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref72
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref72
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref72
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref73
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref73
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref74
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref74
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref75
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref75
https://doi.org/10.2478/revecp-2013-0007
https://doi.org/10.1049/iet-its.2013.0191
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref78
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref78
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref79
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref79
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref80
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref80
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref80
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref81
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref81
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref81
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref82
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref82
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref83
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref83
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref83
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref84
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref84
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref84
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref85
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref85
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref86
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref86
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref87
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref87
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref88
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref88
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref89
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref89
http://refhub.elsevier.com/S0925-5273(19)30087-8/sref89

	Optimization of combined time series methods to forecast the demand for coffee in Brazil: A new approach using Normal Boundary Intersection coupled with mixture designs of experiments and rotated factor scores
	Introduction
	Methodology and background literature review
	Results and discussion
	Conclusions
	Acknowledgement
	Forecast time series methods
	Statistical error measures
	Experimental Designs of FS1 and FS2
	The DM test
	Supplementary data
	References




